精英家教网 > 初中数学 > 题目详情

平行四边形ABCD中,AD=5,DE、CF分别是∠D、∠C的平分线交AB于E、F,若EF=1,则AB=________.

9或11
分析:根据角平分线的性质以及平行四边形的性质即可得出AD=AE,BF=BC,进而得出AF=BE=4,即可得出答案.
解答:解:如图1所示:
∵DE、CF分别是∠ADC、∠BCD的平分线交AB于E、F,
∴∠ADE=∠EDC,∠BCF=∠FCD,
∵AB∥CD,
∴∠AED=∠EDC,∠BFC=∠FCD,
∴∠ADE=∠AED,∠BFC=∠BCF,
∴AD=AE,BF=BC,
∵平行四边形ABCD中,AD=5,
∴BC=5,
∵EF=1,∴AF=4,同理可得BE=4,
故AB=AF+BE+EF=4+4+1=9.
如图2所示:同理:AE=DF=AD=5,
∴AB=AF+BE+EF=5+5+1=11.
故答案为:9或11.
点评:此题主要考查了平行四边形的性质以及角平分线的性质,根据已知得出AD=AE,BC=BF是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,高h=4,则平行四边形ABCD的面积S=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE:EB=1:2,S△AEF=3,则S△FCD=
27
27

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E是BD上一点,AE的延长线交DC于点F,交BC的延长线于点G.求证:
(1)△ABE∽△FDE;
(2)AE2=EF•EG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:
①BE=DF;②AG=GH=HC;③2EG=BG;④S△ABC=5S△AGE
其中正确的有
①②③④
①②③④
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6
3
,AE=6,求AF的长.

查看答案和解析>>

同步练习册答案