精英家教网 > 初中数学 > 题目详情
某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知∠CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm.
(1)用含x的代数式表示扇形O2CD的半径;
(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?

【答案】分析:(1)连接O1A.利用切线的性质知∠AO2O1=∠CO2D=30°;然后在Rt△O1AO2中利用“30°角所对的直角边是斜边的一半”求得O1O2=2x;最后由图形中线段间的和差关系求得扇形O2CD的半径FO2为:EF-EO1-O1O2=24-3x;
(2)设该玩具的制作成本为y元,则根据圆形的面积公式和扇形的面积公式列出y与x间的函数关系,然后利用二次函数的最值即可求得该玩具的最小制作成本.
解答:解:(1)连接O1A.
∵⊙O1与O2C、O2D分别切一点A、B
∴O1A⊥O2C,O2E平分∠CO2D,
∴∠AO2O1=∠CO2D=30°,
∴在Rt△O1AO2中,O1O2=2AO1=2x.
∴FO2=EF-EO1-O1O2=24-3x,即扇形O2CD的半径为(24-3x)cm.

(2)设该玩具的制作成本为y元,则
y=0.45πx2+0.06×
=0.9πx2-7.2πx+28.8π
=0.9π(x-4)2+14.4π
所以当x-4=0,即x=4时,y的值最小.
答:当⊙O1的半径为4cm时,该玩具的制作成本最小.
点评:本题考查了切线的性质、扇形面积的计算、解直角三角形以及二次函数的最值.在利用二次函数求最值时,此题采用了配方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南京)某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知∠CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm.
(1)用含x的代数式表示扇形O2CD的半径;
(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏南京卷)数学(带解析) 题型:解答题

某玩具由一个圆形区域和一个扇形区域组成,如图,在和扇形中,分别相切于A、B,,E、F事直线、扇形的两个交点,EF=24cm,设的半径为x cm,
① 用含x的代数式表示扇形的半径;
② 若和扇形两个区域的制作成本分别为0.45元和0.06元,当的半径为多少时,该玩具成本最小?

查看答案和解析>>

科目:初中数学 来源:2013届江西省景德镇市九年级第三次质检数学试卷(带解析) 题型:解答题

某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别相切于A、B,∠CO2D=60°,直线O1O2与⊙O1、扇形O2CD分别交于E、F两个点,EF=24cm,设⊙O1的半径为xcm,

(1)用含x的代数式表示扇形O2CD的半径;
(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06/cm2元,当⊙O1的半径为多少时,该玩具成本最小?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江西省景德镇市九年级第三次质检数学试卷(解析版) 题型:解答题

某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别相切于A、B,∠CO2D=60°,直线O1O2与⊙O1、扇形O2CD分别交于E、F两个点,EF=24cm,设⊙O1的半径为xcm,

(1)用含x的代数式表示扇形O2CD的半径;

(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06/cm2元,当⊙O1的半径为多少时,该玩具成本最小?

 

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:解答题

某玩具由一个圆形区域和一个扇形区域组成,如图,在和扇形中,分别相切于A、B,,E、F事直线、扇形的两个交点,EF=24cm,设的半径为x cm,

① 用含x的代数式表示扇形的半径;

② 若和扇形两个区域的制作成本分别为0.45元和0.06元,当的半径为多少时,该玩具成本最小?

 

查看答案和解析>>

同步练习册答案