精英家教网 > 初中数学 > 题目详情
如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.

(1)求一次函数的解析式;
(2)求反比例函数的解析式.
解:(1)∵OA=OB=2,∴A(﹣2,0),B(0,2)。
将A与B的坐标代入y=k1x+b得:,解得:
∴一次函数解析式为y=x+2。
(2)∵OD=2,∴D(2,0)。
∵点C在一次函数y=x+2上,且CD⊥x轴,
∴将x=2代入一次函数解析式得:y=2+2=4,即点C坐标为(2,4)。
∵点C在反比例图象上,∴将C(2,4)代入反比例解析式得:k2=8。
∴反比例解析式为

试题分析:(1)由OA与OB的长,确定出A与B的坐标,代入一次函数解析式中求出k1与b的值,即可确定出一次函数解析式。
(2)由OD的长,确定出D坐标,根据CD垂直于x轴,得到C与D横坐标相同,代入一次函数解析式求出C的纵坐标,确定出C坐标,将C坐标代入反比例解析式中求出k2的值,即可确定出反比例解析式。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
时间x(分钟)

10
20
30
40

水量y(m3

3750
3500
3250
3000

(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.

(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将直线向右平移1个单位后所得图象对应的函数解析式为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).
(1)列出满足题意的关于x的不等式组,并求出x的取值范围;
(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
 
空调
彩电
进价(元/台)
5400
3500
售价(元/台)
6100
3900
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,爸爸从家(点O)出发,沿着扇形AOB上OA→→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一次函数图像向下平移个单位,与双曲线交于点A,与轴交于点B,则=(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案