精英家教网 > 初中数学 > 题目详情

【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=

【答案】﹣1.

【解析】

试题分析:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0).

∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);

照此类推可得,C3顶点坐标为(5,1),A3(6,0);

C4顶点坐标为(7,﹣1),A4(8,0);

C5顶点坐标为(9,1),A5(10,0);

C6顶点坐标为(11,﹣1),A6(12,0);

∴m=﹣1.

故答案为:﹣1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设甲数为x,乙数比甲数的3倍少6,则乙数用代数式表示为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数据1,2,3,a的平均数是3,数据4,5,a,b的众数是5,则a+b=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:

①AC=AD;②BD⊥AC;③四边形ACED是菱形

其中正确的个数是(

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:

①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=

上述结论中正确的个数是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,不是相似三角形的是( )

A.任意两个等边三角形

B.有一个角是45°的两个直角三角形

C.有一个角是92°的两个等腰三角形

D.有一个角是45°的两个等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°则△PMN周长的最小值=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图

(1)画出将△ABC向右平移2个单位得到△A1B1C1

(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2

(3)求△A1B1C1与△A2B2C2重合部分的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与x轴交于A(6,0)、B(,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM

(1)求此抛物线的解析式;

(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F

①当点F为M′O′的中点时,求t的值;

②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案