精英家教网 > 初中数学 > 题目详情
(2010•台湾)如图1所示为三角形纸片ABC,上有一点P.已知将A,B,C往内折至P时,出现折线,其中Q、R、S、T四点会分别在上,如图2所示.若△ABC、四边形PTQR的面积分别为16、5,则△PRS面积为( )

A.1
B.2
C.3
D.4
【答案】分析:根据折叠,知△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等,结合已知△ABC、四边形PTQR的面积分别为16、5,即可求解.
解答:解:根据题意,得
△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等.
又△ABC、四边形PTQR的面积分别为16、5,
∴△PRS面积等于(16-5×2)÷2=3.
故选C.
点评:此题主要是能够根据折叠,得到重合图形的面积相等.
练习册系列答案
相关习题

科目:初中数学 来源:2010年台湾省中考数学试卷(一)(解析版) 题型:选择题

(2010•台湾)如图(1),在同一直线,甲自A点开始追赶等速度前进的乙,且图(2)表示两人距离与所经时间的线型关系.若乙的速率为每秒1.5公尺,则经过40秒,甲自A点移动多少公尺( )

A.60
B.61.8
C.67.2
D.69

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(一)(解析版) 题型:选择题

(2010•台湾)如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH的面积为何( )

A.40
B.50
C.60
D.80

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(二)(解析版) 题型:选择题

(2010•台湾)如图所示,数在线的A、B、C、D四点所表示的数分别a、b、20、d.若a、b、20、d为等差数列,且|a-d|=12,则a值( )

A.11
B.12
C.13
D.14

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(二)(解析版) 题型:选择题

(2010•台湾)如图所示是D,E,F,G四点在△ABC边上的位置图.根据图中的符号和数据,求x+y之值( )

A.110
B.120
C.160
D.165

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(二)(解析版) 题型:选择题

(2010•台湾)如图所示,数轴上在-2和-1之间的长度以小隔线分成八等分,A点在其中一隔,则A点表示的数是( )

A.-1
B.-1
C.-2
D.-2

查看答案和解析>>

同步练习册答案