精英家教网 > 初中数学 > 题目详情
如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).

(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点BC两点的对应点分别为B′C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′       ),C′        );
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(               ).
(1)图略(2分),  B’-6 2 ),C’-4 -2               6分
(2)M′( -2x-2y )                                               8分
根据题目的叙述,正确地作出图形,然后确定各点的坐标即可.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CFGCDEF的交点.

(1)求证:△BCF≌△DCE
(2)若BC=5,CF=3,∠BFC=90°,求DGGC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分别是AC、AB
的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿
BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t
<4)s.解答下列问题:

(1)当t为何值时,PQ⊥AB?
(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为ycm2,求y与t之间的函数关系式;
(3)在(2)的情况下,是否存在某一时刻t,使得PQ分四边形BCDE所成的两部分的面积之比为
=1∶29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD 的面积之比等于     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:
(1)D是BC的中点;
(2)△BEC ∽△ADC;
(3)AB× CE=2DP×AD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一块直角三角形木板如图所示,已知∠C=90°,BC=3cm, AC=4cm.根据需要,要把它加工成一个正方形木板,小明和小丽分别设计了如图1和图2的两种方法,哪一块正方形木板面积更大?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

九年级上册的教材第118页有这样一道习题:
“在一块三角形余料ABC中,它的边BC=120mm,高线AD=80mm.要把它加工成正方形零件(如图),使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长为多少mm?”
(1)请你解答上题;
(2)若将上题图中的正方形PQMN改为矩形,其余条件不变,求矩形PQMN的面积S的最大值;
(3)我们把上面习题中的正方形PQMN叫做“BC边上的△ABC的内接正方形”,若在习题的条件下,又知AB=150mm,AC=100mm,请分别写出AB边上的△ABC的内接正方形的边长和AC边上的△ABC的内接正方形的边长(不必写出过程,只要直接写出答案即可,结果精确到1mm);
(4)结合第(1)、(3)题,若三角形的三边长分别为a,b,c,各边上的高分别为ha,hb,hc,要使a边上的三角形内接正方形的面积最大,请写出a与ha必须满足的条件(不必写出过程).                                             

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为
A.(B.(C.(D.(

查看答案和解析>>

同步练习册答案