精英家教网 > 初中数学 > 题目详情
当今社会手机越来越普及,有很多人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.为了解我校初三年级学生的手机使用情况,学生会随机调查了部分学生的手机使用时间,将调查结果分成五类:A.基本不用;B,平均一天使用1—2小时;C.平均一天使用2—4小时;D.平均一天使用4—6小时:E.平均一天使用超过6小时.并用得到的数据绘制成了如下两幅不完整的统计图,请根据相关信息,
   
解答下列问题
(1)将上面的条形统计图补充完整;
(2)若一天中手机使用时间趣过6小时,则患有严重的“手机瘾”.我校初三年级共有1490人,试估计我校初三年级中约有多少人患有严重的“手机瘾”:
(3)在被调查的基本不用手机的4位同学中有2男2女,现要从中随机再抽两名同学去参加座谈,请你用列表法或树状图方法求出所选两位同学恰好是一名男同学和一位女同学的概率.
(1)见解析;(2)149人;(3).

试题分析:(1)根据A的人数是4,占8%,得出总人数,再用总人数、频率、频数、所占的百分比之间的关系,即可求出答案,从而补全统计图;
(2)由图知,患有严重的“手机瘾”的所占百分比是10%,所以1490人中有1490×10%=149人.
(3)根据题意先画树状图法分析所有等可能的出现结果,然后根据概率公式求出答案即可.
试题解析:
(1)4÷8%=50(人),则B为50-4-20-9-5=12,所以条形统计图B为12.
(2)1490×10%=149(人),所以患有严重的“手机瘾”的有149人
(3)列表如下
 
男1
男2
女1
女2
男1
 
(男1,男2)
(男1,女1)
(男1,女2)
男2
(男1,男2)
 
(男2,女1)
(男2,女2)
女1
(男1,女1)
(男2,女1)
 
(女1,女2)
女2
(男1,女2)
(男2,女2)
(女1,女2)
 
总有12种选法,其中一男一女的有8种,所以,选两名恰好是一男一女的概率是:P=.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

元旦期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.

(1)该顾客最少可得_________元购物券,最多可得_________元购物券;
(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小莉的爸爸买了今某演唱会的一张门票,她和哥哥两人都很想去观看,可门票只
有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字
为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,
然后将抽出的两张牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.
(1)请用树状图或列表的方法表示出两张牌数字相加和的所有可能出现的结果;
(2)哥哥设计的游戏规则公平吗?为什么?若不公平,请设计一种公平的游戏规则.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某校九年级(1)班50名学生中有20名团员,他们都积极报名参加成都市“文明劝导活动”。根据要求,该班从团员中随机抽取1名参加,则该班团员小亮被抽到的概率是(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为 ,则放入口袋中的黄球总数n=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.

(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是    (只需要填一个三角形);
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.

(1)试用列表或画树形图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.

查看答案和解析>>

同步练习册答案