精英家教网 > 初中数学 > 题目详情

如图,AB∥CD,BN、DN分别平分∠ABM、∠MDC,试问∠BMD与∠BND之间的数量关系如何?证明你的结论.

解:∠BMD=2∠BND.理由如下:
过点M作直线ME∥AB,过点N作直线NF∥AB,
又∵AB∥CD,
∴ME∥CD,NF∥CD(平行于同一直线的两直线互相平行),
∴∠ABM=∠BME,∠CDM=∠DME(两直线平行,内错角相等),
∴∠BMD=∠BME+∠DME=∠ABM+∠CDM.
同理可得:∠BND=∠ABN+∠CDN.
∵BN,DN分别平分∠ABM,∠MDC,
∴∠ABM=2∠ABN,∠CDM=2∠CDN(角平分线定义)
∴∠BMD=2∠BND.
分析:过点M作直线ME∥AB,过点N作直线NF∥AB,由平行线的性质可得∠BMD=ABM+∠CDM,∠BND=∠ABN+∠CDN,再根据角平分线的性质,即可得到∠BMD和∠BND的关系.
点评:本题考查了平行线的性质,正确作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,AD与BC相交于点E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,AB∥CD,P是BC上的一个动点,设∠CDP=∠1,∠CPD=∠2,请你猜想出∠1、∠2与∠B之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠1=58°,则∠2的度数是(  )

查看答案和解析>>

同步练习册答案