精英家教网 > 初中数学 > 题目详情
如图,是一个风筝的平面示意图,四边形ABCD是等腰梯形,E、F、G、H分别是各边的中点,假设图中阴影部分所需布料的面积为S1,其它部分所需布料的面积之和为S2(边缘外的布料不计),则(  )
A.S1>S2B.S1<S2C.S1=S2D.不确定
C

试题分析:连接BD,
根据E,F分别是AB,AD的中点,则EF是△ABD的中位线,EF∥BD,且EF=•BD,△AFE∽△ABD,
且相似比是1:2,相似三角形的面积的比等于相似比的平方,
因而△AFE的面积是△ABD面积的
同理,△CGH,△BGF,△DEH分别是△BCD,△ABC,△ACD面积的
则△AFE,△CGH,△BGF,△DEH是梯形ABCD的面积的,则S1=S2,故选C.

点评:本题主要考查了中位线定理,利用了三角形相似的性质,相似三角形的面积的比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于E点,交DF于M,F是BC延长线上一点,且CE=CF.
(1)求证:BM⊥DF;
(2)若正方形ABCD的边长为2,求ME•MB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.④三角形ADE与梯形DECB的面积比为1:4,其中正确的有【    】

(A)3个          (B)2个       (C)1个          (D)0个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,在矩形ABCD中,AB=12cm,BC=6cm,点E自A点出发,以每秒1cm的速度向D点前进,同时点F从D点以每秒2cm的速度向C点前进,若移动的时间为t,且0≤t≤6.
(1)当t为多少时,DE=2DF;
(2)四边形DEBF的面积是否为定值?若是定值,请求出定值;若不是定值,请说明理由.
(3)以点D、E、F为顶点的三角形能否与△BCD相似?若能,请求出所有可能的t的值;若不能,请说明理由.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,D、E是AB的三等分点,DF∥EG∥BC,图中三部分的面积分别为S1,S2,S3,则S1:S2:S3=(  )

A.1:2:3          B.1:2:4         C.1:3:5          D.2:3:4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为(  )
A.7B.14C.21D.28

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=,则此三角形移动的距离PP′=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依此类推,若各种开本的矩形都相似,那么等于  

查看答案和解析>>

同步练习册答案