【题目】如图,点P为反比例函数y=(x>0)图象上一点,以点P为圆心作圆,且该圆恰与两坐标轴都相切.在y轴任取一点E,连接PE并过点P作直线PE的垂线与x轴交于点F,则线段OE与线段OF的长度可能满足的数量关系式是 .
【答案】OF﹣OE=2或OE﹣OF=2或OF+OE=2.
【解析】
试题分析:设以P为圆心的⊙P与两坐标轴相切的切点分别为B,A,如图,连接PB,PA,
利用P点在双曲线y=(x>0)图象上且以P为圆心的⊙P与两坐标轴都相切,求出P点坐标,再利用△BPE≌△APF,分三种情况列出OE与OF之间的关系.∵点P在双曲线y=(x>0)上,以P为圆心的⊙P与两坐标轴都相切,PB=PA,∴P(1,1),又∵PF⊥PE,∴∠EPF=90°,∵∠BPE+∠EPA=90°,∵∠EPA+∠FPA=90°,∴∠FPA=∠BPE,在△BPE和△APF中,∴△BPE≌△APF,∴AF=BE.①当F在x轴的正半轴,且OF>1时,则有OF﹣OA=OB+OE,即OF﹣1=1+OE,∴OF﹣OE=2;②当F在x轴的负半轴时,则有OF+OA=OE﹣OB,即OF+1=OE﹣1,∴OE﹣OF=2;③当F在x轴的正半轴,且OF<1时,则有OA﹣OF=OE﹣OB,即1﹣OF=OE﹣1,∴OF+OE=2,综上,线段OE与线段OF的长度可能满足的数量关系式是:OF﹣OE=2或OE﹣OF=2或OF+OE=2,故答案为:OF﹣OE=2或OE﹣OF=2或OF+OE=2.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,反比例函数y=(x>0)的图象与四边形ABOC两边AC、AB分别交于点E、F,点E为AC的中点.
(1)如图1,当四边形ABOC为正方形,k=2时,BF:FA= .
(2)如图2,当四边形ABOC为矩形(AC≠AB),k=2时,BF:FA= .
(3)在(2)中,若k为不等于0的任意实数,BF:FA的值与(1)或(2)相同吗?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程( )
A.20(1+x)3=24.2
B.20(1﹣x)2=24.2
C.20+20(1+x)2=24.2
D.20(1+x)2=24.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )
A. 5.5公里 B. 6.9公里 C. 7.5公里 D. 8.1公里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
甲 | 乙 | 丙 | 丁 | |
平均数(环) | 8.9 | 9.1 | 8.9 | 9.1 |
方差 | 3.3 | 3.8 | 3.8 | 3.3 |
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.丁
B.丙
C.乙
D.甲
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com