精英家教网 > 初中数学 > 题目详情
盼盼同学在学习正多边形时,发现了以下一组有趣的结论:

①若P是圆内接正三角形ABC的外接圆的上一点,则PB+PC=PA;
②若P是圆内接正四边形ABCD的外接圆的上一点,则
③若P是圆内接正五边形ABCDE的外接圆的上一点,请问PB+PE与PA有怎样的数量关系,写出结论,并加以证明;
④若P是圆内接正n边形A1A2A3…An的外接圆的上一点,请问PA2+PAn与PA1又有怎样的数量关系,写出结论,不要求证明.
【答案】分析:PB+PC=PA,可以在PA上截取一条线段等于PB,然后证明剩下的部分等于PC即可,其它三问的解决思路相同.
解答:解:
③PB+PE与PA满足的数量关系是:PB+PE=2PA•cos36°;(3分)
理由如下:作AM⊥PB于M,AN⊥PE于N,
∵∠APM=∠APN
∴Rt△AMP≌Rt△ANP,
∴AM=AN,PM=PE;(5分)
∵AB=AE,
∴Rt△AMB≌Rt△ANE,
∴MB=NE∴PB+PE=(PM-MB)+(PN+NE)=2PN;(7分)
,且ABCDE为正五边形,

∴∠APE=36°;
在Rt△ANP中,
∴PN=PA•cos36°,
∴PB+PE=2PA•cos36°.(9分)

④若P是圆内接正n边形A1A2A3…An的外接圆的上一点时,PA2+PAn与PA1满足的数量关系是:.(12分)

点评:正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.
(1)他们在一次实验中共掷骰子60次,试验的结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数  7 9 6 8 20 10
①填空:此次实验中“5点朝上”的频率为
 

②小红说:“根据实验,出现5点朝上的概率最大.”她的说法正确吗?为什么?
(2)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

盼盼同学在学习正多边形时,发现了以下一组有趣的结论:
精英家教网
①若P是圆内接正三角形ABC的外接圆的
BC
上一点,则PB+PC=PA;
②若P是圆内接正四边形ABCD的外接圆的
BC
上一点,则PB+PD=
2
PA

③若P是圆内接正五边形ABCDE的外接圆的
BC
上一点,请问PB+PE与PA有怎样的数量关系,写出结论,并加以证明;
④若P是圆内接正n边形A1A2A3…An的外接圆的
A2A3
上一点,请问PA2+PAn与PA1又有怎样的数量关系,写出结论,不要求证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

小强与小颖两位同学在学习“概率”时,做抛骰子(均匀正方体形状)试验,共抛了54次,出现向上点数的次数如下表:
向上点数 1 2 3 4 5 6
出现次数 6 9 4 7 18 10
(1)请计算:出现向上点数为1的频率.
(2)小强说:“根据试验,一次试验中出现向上点数为5的概率最大.”小颖说:“如果抛540次,则出现向上点数为6的次数正好是100次.”请判断他们说法的对错.
(3)若小强与小颖各抛一枚骰子,则P(出现向上点数之和为3的倍数)=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

盼盼同学在学习正多边形时,发现了以下一组有趣的结论:

①若P是圆内接正三角形ABC的外接圆的数学公式上一点,则PB+PC=PA;
②若P是圆内接正四边形ABCD的外接圆的数学公式上一点,则数学公式
③若P是圆内接正五边形ABCDE的外接圆的数学公式上一点,请问PB+PE与PA有怎样的数量关系,写出结论,并加以证明;
④若P是圆内接正n边形A1A2A3…An的外接圆的数学公式上一点,请问PA2+PAn与PA1又有怎样的数量关系,写出结论,不要求证明.

查看答案和解析>>

同步练习册答案