精英家教网 > 初中数学 > 题目详情
(2005•宁德)如图,已知:AC=AB,AE=AD,请写出一个与点D有关的正确结论:    .(例如:∠ADO+∠ODB=180°,DB=EC等,除此之外再填一个).
【答案】分析:由已知条件,加上∠A是公共角,可得三角形全等,根据全等三角形的性质即可写出∠ADC=∠AEB,再根据等角的补角相等即可写出∠CDB=∠CEB.
解答:解:在△ADC和△AEB中,AC=AB,AE=AD,∠A=∠A,
∴△ADC≌△AEB.
∴∠ADC=∠AEB,∠CDB=∠CEB.
(答案不唯一).
故填∠ADC=∠AEB或∠CDB=∠CEB.
点评:本题考查了全等三角形的判定与性质;题目是一道开放结论的试题,它有利于考查学生的发散思维能力和创新意识.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2005•宁德)如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,A点的坐标为(4,0).
(1)求k的值;
(2)若P为y轴(B点除外)上的一点,过P作PC⊥y轴交直线AB于C.设线段PC的长为l,点P的坐标为(0,m).
①如果点P在线段BO(B点除外)上移动,求l与m的函数关系式,并写出自变量m的取值范围;
②如果点P在射线BO(B、O两点除外)上移动,连接PA,则△APC的面积S也随之发生变化.请你在面积S的整个变化过程中,求当m为何值时,S=4.

查看答案和解析>>

科目:初中数学 来源:2005年福建省泉州市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•宁德)如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,A点的坐标为(4,0).
(1)求k的值;
(2)若P为y轴(B点除外)上的一点,过P作PC⊥y轴交直线AB于C.设线段PC的长为l,点P的坐标为(0,m).
①如果点P在线段BO(B点除外)上移动,求l与m的函数关系式,并写出自变量m的取值范围;
②如果点P在射线BO(B、O两点除外)上移动,连接PA,则△APC的面积S也随之发生变化.请你在面积S的整个变化过程中,求当m为何值时,S=4.

查看答案和解析>>

科目:初中数学 来源:2005年福建省泉州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•宁德)如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,A点的坐标为(4,0).
(1)求k的值;
(2)若P为y轴(B点除外)上的一点,过P作PC⊥y轴交直线AB于C.设线段PC的长为l,点P的坐标为(0,m).
①如果点P在线段BO(B点除外)上移动,求l与m的函数关系式,并写出自变量m的取值范围;
②如果点P在射线BO(B、O两点除外)上移动,连接PA,则△APC的面积S也随之发生变化.请你在面积S的整个变化过程中,求当m为何值时,S=4.

查看答案和解析>>

科目:初中数学 来源:2005年福建省泉州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•宁德)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.

查看答案和解析>>

科目:初中数学 来源:2005年福建省泉州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•宁德)如图是某居民小区的一块直角三角形空地ABC,某斜边AB=100米,直角边AC=80米.现要利用这块空地建一个矩形停车场DCFE,使得D点在BC边上,E、F分别是AB、AC边的中点.
(1)求另一条直角边BC的长度;
(2)求停车场DCFE的面积;
(3)为了提高空地利用律,现要在剩余的△BDE中,建一个半圆形的花坛,使它的圆心在BE边上,且使花坛的面积达到最大,请你在原图中画出花坛的草图,求出它的半径(不要求说明面积最大的理由),并求此时直角三角形空地ABC的总利用率是百分之几(精确到1%).

查看答案和解析>>

同步练习册答案