如图,在直角坐标系中,点A的坐标为(,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)请直接写出点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)如果点P是(2)中的抛物线上的动点,且在x轴的上方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(1)(2)
(3)当,即时,.
解析试题分析:(1)过作y轴的垂线,垂足为E,在直角三角形中求解;(2)设抛物线的解析式为,因为过,,
可得,从而求经过A、O、B三点的抛物线的解析式.
(3)作PN⊥x轴,垂足为M,交AB于点N,设P(m,).
则M(m,0),已知A(,0),.
求得直线AB的函数解析式为,所以,
,根据抛物线的性质得出最大值.
试题解析:(1)
(2)设抛物线的解析式为
∵过
∴
∴
∴ 4分
(3)作PN⊥x轴,垂足为M,交AB于点N,设P(m,) 5分
则M(m,0),
∵A(,0),
∴直线AB的函数解析式为
∴N(m,) 6分
∴PN=-()= 7分
∴ 8分
9分
当,即时, 11分
. 12分
考点:1.借解直角三角形求点的坐标.2.待定系数法求解析式.3.二次函数的性质.
科目:初中数学 来源: 题型:解答题
已知抛物线y=x2-2kx+3k+4.
(1)顶点在y轴上时,k的值为_________.
(2)顶点在x轴上时,k的值为_________.
(3)抛物线经过原点时,k的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线与直线交于点A 、B,与y轴交于点C.
(1)求点A、B的坐标;
(2)若点P是直线x=1上一点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,要设计一个矩形的花坛,花坛长60 m,宽40 m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10 m,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m.(π的值取3)
(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的多36 m2时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为 m.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)
(1)求该抛物线的解析式;
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值;
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。
(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com