精英家教网 > 初中数学 > 题目详情

△ABC是等边三角形,D,E,F为各边中点,则图中共有正三角形


  1. A.
    2个
  2. B.
    3个
  3. C.
    4个
  4. D.
    5个
D
分析:根据等边三角形的判定方法,可知三边,三内角相等的三角形为等边三角形,由AB=BC=AC,且D,E,F为各边中点,可知:AE=EB=BF=FC=CD=DA=DE=EF=FD.所以图中三角形均为等边三角形.
解答:因为△ABC为等边三角形,所以AB=BC=AC,
又因为D,E,F为各边中点,所以AE=EB=BF=FC=CD=DA;
又因为DE,DF,EF分别为中位线,所以DE=BC,EF=AC,DF=AB,
即DE=EF=DF.所以AE=EB=BF=FC=CD=DA=DE=EF=FD.
所以此图中所有的三角形均为等边三角形.
因此应选择5个,
故选择D.
点评:考查中位线定理,以及中点的应用.三角形判定方法,即三边相等的三角形均为等边三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a、b、c是△ABC的三条边长,若x=-1为关于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形吗?△ABC是等边三角形吗?请写出你的结论并证明;
(2)若代数式子
a-2
+
2-a
有意义,且b为方程y2-8y+15=0的根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC是等边三角形,D、E分别是BC、CA上的点,且BD=CE.
(1)求证:AD=BE;(2)求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,
(1)用直尺和圆规作边BC的高线AD交BC于点D(保留作图痕迹,不要求写作法);
(2)若△ABC的边长为2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•裕华区二模)已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB=AC,若要使△ABC是等边三角形,那么需添加一个条件:
AB=BC
AB=BC
∠A=60°
∠A=60°
(从不同角度填空).

查看答案和解析>>

同步练习册答案