精英家教网 > 初中数学 > 题目详情

【题目】九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).

时间x(天)

1

30

60

90

每天销售量p(件)

198

140

80

20


(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.

【答案】
(1)解:当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),

∵y=kx+b经过点(0,40)、(50,90),

,解得:

∴售价y与时间x的函数关系式为y=x+40;

当50≤x≤90时,y=90.

∴售价y与时间x的函数关系式为y=

由数据可知每天的销售量p与时间x成一次函数关系,

设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),

∵p=mx+n过点(60,80)、(30,140),

,解得:

∴p=﹣2x+200(0≤x≤90,且x为整数),

当1≤x≤50时,w=(y﹣30)p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;

当50≤x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.

综上所示,每天的销售利润w与时间x的函数关系式是w=


(2)解:当1≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,

∵a=﹣2<0且1≤x≤50,

∴当x=45时,w取最大值,最大值为6050元.

当50≤x≤90时,w=﹣120x+12000,

∵k=﹣120<0,w随x增大而减小,

∴当x=50时,w取最大值,最大值为6000元.

∵6050>6000,

∴当x=45时,w最大,最大值为6050元.

即销售第45天时,当天获得的销售利润最大,最大利润是6050元


(3)解:当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,

解得:30≤x≤50,

50﹣30+1=21(天);

当50≤x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,

解得:50≤x≤53

∵x为整数,

∴50≤x≤53,

53﹣50+1=4(天).

综上可知:21+4﹣1=24(天),

故该商品在销售过程中,共有24天每天的销售利润不低于5600元


【解析】(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50≤x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50≤x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠A=90°,AB=AC,点DBC的中点.

(1)如图①,若点E、F分别为AB、AC上的点,且DEDF,求证:BE=AF;

(2)若点E、F分别为AB、CA延长线上的点,且DEDF,那么BE=AF吗?请利用图②说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.
(1)求证:CD是小半圆M的切线;
(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y. ①求y与x之间的函数关系式,并写出自变量x的取值范围;
②当y=3时,求P,M两点之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在锐角三角形ABC直线lBC的中垂线射线m为∠ABC的角平分线直线lm相交于点P.若∠BAC=60°,ACP=24°,则∠ABP的度数是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)
(参考数据:sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.

(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;

(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, AD 为△ ABC 的中线, BE 为△ ABD 的中线.

(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度数;

(2)作△ BED 的边 BD 边上的高;

(3)若△ ABC 的面积为 20, BD=2.5,求△ BDE BD 边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.

查看答案和解析>>

同步练习册答案