精英家教网 > 初中数学 > 题目详情

已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E作业宝点,F是BE的中点,延长AF,CB交于点P.
(1)求证:PA是⊙O的切线;
(2)若AF=3,BC=8,求AE的长.

(1)证明:连接AB,OA,OF;
∵F是BE的中点,
∴FE=BF.
∵OB=OC,
∴OF∥EC.
∴∠C=∠POF.
∴∠AOF=∠CAO.
∵∠C=∠CAO,
∴∠POF=∠AOF.
∵BO=AO,OF=OF,
∴∠OAP=∠EBC=90°.
∴PA是⊙O的切线.

(2)解:∵BE是⊙O的切线,PA是⊙O的切线,
∴BF=AF=3,
∴BE=6.
∵BC=8,∠CBE=90°,
∴CE=10.
∵BE是⊙O的切线,
∴EB2=AE•EC.
∴AE=3.6.
分析:(1)要想证PA是⊙O的切线,只要连接OA,求证∠OAP=90°即可;
(2)先由切线长定理可知BF=AF,再在RT△BCE中根据勾股定理求出CE,最后由切割线定理求出AE的长.
点评:本题考查的是切线的判定及相似三角形的判定和性质,勾股定理的运用的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图有一个矩形花坛ABCD,有个别人贪图方便,从E点直插过去到C点,已知BE=7米,BC=24米,那么这些人以践踏花草为代价,仅仅是只少走了
6
米的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC是等边三角形,点D是射线BC上一动点(直D不与B、C重合),以AD为边在AD的左侧作等边△ADE,过点E作BC的平行线交射线AB、AC于点F、G.
(1)当点D在线段BC上运动时,判断四边形BCGE是什么四边形?说明理由;
(2)当点D在线段BC的延长线上运动时,(1)中的两个结论还成立吗?
(3)当点D在什么位置时,四边形BCGE是菱形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图有一个矩形花坛ABCD,有个别人贪图方便,从E点直插过去到C点,已知BE=7米,BC=24米,那么这些人以践踏花草为代价,仅仅是只少走了________米的路程.

查看答案和解析>>

科目:初中数学 来源:《1.1-1.2 证明(二)》2009年水平测试C卷(解析版) 题型:填空题

如图有一个矩形花坛ABCD,有个别人贪图方便,从E点直插过去到C点,已知BE=7米,BC=24米,那么这些人以践踏花草为代价,仅仅是只少走了    米的路程.

查看答案和解析>>

同步练习册答案