精英家教网 > 初中数学 > 题目详情
(2004•福州)如图,在校园内有两棵树,相距12m,一棵树高13m,另一棵树高8m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞    m.
【答案】分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
解答:解:两棵树高度相差为AE=13-8=5m,之间的距离为BD=CE=12m,即直角三角形的两直角边,故斜边长AC==13m,即小鸟至少要飞13m.
点评:本题主要是将小鸟的飞行路线转化为求直角三角形的斜边,利用勾股定理解答即可.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2004•福州)如图所示,抛物线y=-(x-m)2的顶点为A,直线与y轴的交点为B,其中m>0.
(1)写出抛物线对称轴及顶点A的坐标;(用含有m的代数式表示)
(2)证明点A在直线l上,并求∠OAB的度数;
(3)动点Q在抛物线的对称轴上,在对称轴左侧的抛物线上是否存在点P,使以P、Q、A为顶点的三角形与△OAB全等?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2004•福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)
(1)根据图象分别求出l1,l2的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(进化一中 薛锋章等) (解析版) 题型:解答题

(2004•福州)如图所示,抛物线y=-(x-m)2的顶点为A,直线与y轴的交点为B,其中m>0.
(1)写出抛物线对称轴及顶点A的坐标;(用含有m的代数式表示)
(2)证明点A在直线l上,并求∠OAB的度数;
(3)动点Q在抛物线的对称轴上,在对称轴左侧的抛物线上是否存在点P,使以P、Q、A为顶点的三角形与△OAB全等?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年陕西省中考数学预测试卷(二)(解析版) 题型:解答题

(2004•福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)
(1)根据图象分别求出l1,l2的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.

查看答案和解析>>

科目:初中数学 来源:2004年福建省福州市中考数学试卷(解析版) 题型:解答题

(2004•福州)如图所示,抛物线y=-(x-m)2的顶点为A,直线与y轴的交点为B,其中m>0.
(1)写出抛物线对称轴及顶点A的坐标;(用含有m的代数式表示)
(2)证明点A在直线l上,并求∠OAB的度数;
(3)动点Q在抛物线的对称轴上,在对称轴左侧的抛物线上是否存在点P,使以P、Q、A为顶点的三角形与△OAB全等?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案