精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,在正方形ABCD中,AC与BD相交于O,点H在AB的延长线上,AH=AC,AG⊥CH,垂足为G,AG交BD于E,交BC于F.
求证:(1)CG=数学公式AF;(2)OE=数学公式CF.

证明:(1)∵AH=AC,AG⊥CH,
∴CG=,∠BAF=90°-∠H.
∵在正方形ABCD中,∠HAC=∠ABC=90°,
∴∠BCF=90°-∠H.
∴∠BAF=∠BCG.
又∵AB=BC,
∴△ABF≌△CBH.
∴AF=CH.
∴CG=

(2)取CF的中点P,连接OP,
在正方形ABCD中,∠ABO=∠ACO=90°=45°.
∵AH=AC,AG⊥CH,
∴∠BAE=∠FAC,
∵∠BEF=∠ABE+∠BAF,∠BFE=∠FCA+∠FAC,
∴∠BEF=∠BFE.
∵AO=OC,
∴OP∥AF,
∴∠BOP=∠BEF,∠BPO=∠BFE.
∴∠BOP=∠BPO.
∴OE=FP,

分析:(1)根据正方形的性质和已知条件证明△ABF≌△CBH,所以可得到AF=CH,进而证明CG=AF;
(2)取CF的中点P,连接OP,利用正方形的性质和已知条件证明OE=FP即可.
点评:本题考查了正方形的性质的运用,等腰三角形判定及性质的运用,全等三角形的判定与性质的运用,直角三角形斜边上的中线等于斜边的一半的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD中,E是CB延长线上一点,EB=
12
BC,如果F是AB的中点,请你在正方形ABCD上找一点,与F点连接成线段,并说明它和AE相等的理由.
解:连接
 
,则
 
=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为
2

③EB⊥ED;
④S△APD+S△APB=1+
6

⑤S正方形ABCD=4+
6
.其中正确结论的序号是(  )
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.△ADQ与△QCP是否相似?
为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在正方形ABCD中,AB=8,点E在边AB上点,CE的垂直平分线FP 分别交AD精英家教网、CE、CB于点F、H、G,交AB的延长线于点P.
(1)求证:△EBC∽△EHP;
(2)设BE=x,BP=y,求y与x之间的函数解析式,并写出定义域;
(3)当BG=
74
时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.
(1)线段AF与BE有何关系.说明理由;
(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.

查看答案和解析>>

同步练习册答案