【题目】如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.
(1)求证:AD=AN;
(2)若AB=8,ON=1,求⊙O的半径.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;
(2)先根据垂径定理求出AE的长,设NE=x,则OE=x-1,NE=ED=x,r=OD=OE+ED=2x-1
连结AO,则AO=OD=2x-1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论.
试题解析:
(1)证明:∵CD⊥AB
∴∠CEB=90
∴∠C+∠B=90.
同理∠C+∠CNM=90
∴∠CNM=∠B.
∵∠CNM=∠AND
∴∠AND=∠B
∵弧AC=弧AC
∴∠D=∠B
∴∠AND=∠D
∴AN=AD
(2)解:设ON的长为,连接OA
∵AN=AD,CD⊥AB
∴DE=NE=
∴OD=OE+ED=
∴OA=OD.
∴在Rt△OAE中
∴
解得或 (不合题意,舍去).
∴OA.
即⊙O的半径为.
科目:初中数学 来源: 题型:
【题目】某灯具厂计划一天生产300盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入.下表是某周的生产情况(增产记为正、减产记为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 |
(1)求该厂本周实际生产景观灯的盏数;
(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数;
(3)该厂实行每日计件工资制,每生产一盏景观灯可得60元,若超额完成任务,则超过部分每盏另奖20元,若未能完成任务,则少生产一盏扣25元,那么该厂工人这一周的工资总额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列命题中,正确的是( )
A.两组对边分别平行的四边形是矩形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.一组邻边相等的矩形是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各对量中,不具有相反意义的是( )
A. 盈利3万元与支出3万元
B. 胜2局与负2局
C. 向东走100m与向西走50m
D. 转盘逆时针转6圈与顺时针转6圈
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com