精英家教网 > 初中数学 > 题目详情

如图,客轮沿折线A─B─C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮,两船同时起航,并同时到达折线A─B─C上的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.
(1)选择:两船相遇之处E点
A、在线段AB上;B、在线段BC上;C、可以在线段AB上,也可以在线段BC上.
(2)求货轮从出发到两船相遇共航行了多少海里?

解:(1)B

(2)设货轮从出发到两船相遇共航行了x海里,过D点作DF⊥CB于F,连接DE,则DE=x,AB+BE=2x,
∵D点是AC的中点,
∴DF=AB=100,EF=400-100-2x,
在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2
解得x=200±
∵200+>100(舍去),
∴DE=200-
答:货轮从出发到两船相遇共航行了(200-)海里.
分析:(1)连接BD,则△ABD是等腰直角三角形,假设E为AB的中点,有AB=2DE,此时DE最短;假设E点在线段AB上,但不在中点,根据已知客轮速度是货轮速度的2倍可得AE=2DE,由假设E为AB的中点,有AB=2DE得出AE>AB,很明显假设不成立.故E点不在AB上,应该在线段BC上;
(2)设货轮从出发到两船相遇共航行了x海里,过D点作DF⊥CB于F,连接DE,则DE=x,AB+BE=2x,根据D点是AC的中点,得DF=AB=100,EF=400-100-2x,在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2解方程求解即可.
点评:当三角形中有中点时,常作三角形的中位线.要熟练掌握勾股定理并能利用它作为相等关系列方程求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,客轮沿折线A─B─C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮,两船同时起航,并同时到达折线A─B─C上的某点E处,已知AB=BC=200海里,∠ABC精英家教网=90°,客轮速度是货轮速度的2倍.
(1)选择:两船相遇之处E点(  )
A、在线段AB上;B、在线段BC上;C、可以在线段AB上,也可以在线段BC上.
(2)求货轮从出发到两船相遇共航行了多少海里?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A-B-C上的某点E处.已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.

(1)选择:两船相遇之处E点(  )

(A)在线段AB上;(B)在线段BC上;(C)可以在线段AB上,也可以在线段BC上;

(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮。两船同时起航,并同时到达折线A-B-C的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍。

(1)选择:两船相遇之处E点(      )。

A、在线段AB上    B、在线段BC上   C、可以在线段AB上,也可以在线段BC上

(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)。

查看答案和解析>>

科目:初中数学 来源:2009-2010学年九年级(上)数学期末复习题(解析版) 题型:解答题

如图,客轮沿折线A─B─C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮,两船同时起航,并同时到达折线A─B─C上的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.
(1)选择:两船相遇之处E点( )
A、在线段AB上;B、在线段BC上;C、可以在线段AB上,也可以在线段BC上.
(2)求货轮从出发到两船相遇共航行了多少海里?

查看答案和解析>>

同步练习册答案