分析 把两根之和与两根之积代入已知条件中,求得m的取值范围,再根据根的判别式求得m的取值范围.最后综合情况,求得m的取值范围.
解答 解:∵一元二次方程x2-4x+4m-1=0有两个实数根x1、x2,
∴x1+x2=4,x1•x2=4m-1,
代入不等式得-$\frac{4m-1}{4}$<1,
解得m>-$\frac{3}{4}$,
又∵方程有两个实数根,
∴△=b2-4ac=(-4)2-4×1×(4m-1)≥0,
解得m≤$\frac{5}{4}$,
综合以上可知实数m的取值范围是-$\frac{3}{4}$<m≤$\frac{5}{4}$.
故答案为:-$\frac{3}{4}$<m≤$\frac{5}{4}$.
点评 此题考查一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1种 | B. | 2种 | C. | 3种 | D. | 4种 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com