精英家教网 > 初中数学 > 题目详情
18.如图,AC是平行四边形ABCD的一条对角线,过点B作BM⊥AC于点M,多点D作DN⊥AC于点N,分别连接BN与DM,求证:BN=DM.

分析 由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,又由BM⊥AC,DN⊥AC,即可得BM∥DN,∠DNA=∠BMC=90°,然后利用AAS证得△ADN≌△CBM,即可得DN=BM,由有一组对边相等且平行的四边形是平行四边形,证得四边形BMDN是平行四边形,即可得出结论.

解答 证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAC=∠BCA,
∵BM⊥AC,DN⊥AC,
∴∠AND=∠BMC=90°,BM∥DN,
∵在△ADN和△CBM中,$\left\{\begin{array}{l}{∠AND=∠BMC}&{\;}\\{∠DAN=∠BCM}&{\;}\\{AD=BC}&{\;}\end{array}\right.$,
∴△ADN≌△CBM(AAS),
∴DN=BM,
∴四边形BMDN是平行四边形,
∴BN=DM.

点评 本题考查了平行四边形的性质和全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,题目具有一定的代表性,是一道比较好的题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.根据解答过程填空(写出推理理由或根据):
如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC
证明∵∠DAF=∠F(  已知 )
∴AD∥BF内错角相等,两直线平行
∴∠D=∠DCF两直线平行,内错角相等
∵∠B=∠D已知
∴∠B=∠DCF ( 等量代换 )
∴AB∥DC同位角相等,两直线平行.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.分解因式:3ab2-6a2b+3a3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:
(1)∠CBA的度数为15°.
(2)求出这段河的宽(结果精确到1m,备用数据$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知A、B两地相距40km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑自行车,图中CD、OE分别表示甲、乙离开A地的路程y(km)与时间x(h)的函数关系的图象,结合图象解答下列问题.
(1)甲比乙晚出发1小时,乙的速度是10km/h;
(2)在甲出发后几小时,两人相遇?
(3)甲到达B地后,原地休息0.5小时,从B地以原来的速度和路线返回A地,求甲在返回过程中与乙相距10km时,对应x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$,其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某校调查部分学生是否知道母亲生日,绘制了如下扇形统计图和条形统计图,请根据图中信息,解答下列问题:

(1)求本次被调查学生的人数,并补全条形统计图;
(2)若全校共有5400名学生,请你估计这所学校有多少名学生知道母亲的生日?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,∠C=90°,O为AB边上一点,⊙O交AB于E,F两点,BC切⊙O于点D,且CD=$\frac{1}{2}$EF=1.
(1)求证:⊙O与AC相切;
(2)求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案