| A. | 2+$\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | 2+$\sqrt{3}$或2-$\sqrt{3}$ | D. | 4+2$\sqrt{3}$或2-$\sqrt{3}$ |
分析 根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.
解答
解:由题意可得,如右图所示
存在两种情况,
当△ABC为△A1BC时,连接OB、OC,
∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,
∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,
∴CD=1,OD=$\sqrt{{2}^{2}-{1}^{2}}=\sqrt{3}$,
∴${S}_{△{A}_{1}BC}=\frac{BC•{A}_{1}D}{2}=\frac{2×(2-\sqrt{3})}{2}$=2-$\sqrt{3}$,
当△ABC为△A2BC时,连接OB、OC,
∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,
∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,
∴CD=1,OD=$\sqrt{{2}^{2}-{1}^{2}}=\sqrt{3}$,
∴S△A2BC=$\frac{BC•D{A}_{2}}{2}$=$\frac{2×(2+\sqrt{3})}{2}$=2+$\sqrt{3}$,
由上可得,△ABC的面积为$2-\sqrt{3}$或2+$\sqrt{3}$,
故选C.
点评 本题考查三角形的外接圆和外心,等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 组别 | 成绩x(分) | 频数(人数) | 频率 |
| 一 | 50≤x<60 | 2 | 0.04 |
| 二 | 60≤x<70 | 10 | 0.2 |
| 三 | 70≤x<80 | 14 | b |
| 四 | 80≤x<90 | a | 0.32 |
| 五 | 90≤x<100 | 8 | 0.16 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1<r<4 | B. | 2<r<4 | C. | 1<r<8 | D. | 2<r<8 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 80分 | B. | 82分 | C. | 84分 | D. | 86分 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com