精英家教网 > 初中数学 > 题目详情

如图所示,已知点A是半圆上的三等分点,B是数学公式的中点,P是直径MN上一动点,⊙O的半径为1.请问:P在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.

解:P位于A′B与MN的交点处,AP+BP的值最小;
作A关于MN的对称点A′,根据圆的对称性,则A′必在圆上,
连接BA′交MN于P,连接PA,则PA+PB最小,此时PA+PB=PA′+PB=A′B,
连接OA、OA′、OB,
=
∴∠AON=∠A′ON=60°.
=
∴∠BON=∠AON=30°.
∴∠A′OB=90°.
∴A′B===
即AP+BP的最小值是
分析:通过作辅助线,根据“两点之间线段最短”可将AP+BP的最小值转化为求直角三角形的斜边长.
点评:此题主要考查了轴对称最短路线问题以及勾股定理和垂径定理等知识,根据已知得出P点位置是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知点P是反比例函数y=
kx
的图象在第二象限内的一点,过P点分别作x轴,y轴的垂线,垂足为M,N,若矩形OMPN的面积为5,则k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,已知点D是等边三角形ABC的边BC延长线上的一点,∠EBC=∠DAC,CE∥AB.求证:△CDE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①所示,已知点0是∠EPF的平分线上的点,以点0为圆心的圆与角的两边分别交于A,B和C,D.求证:AB=CD.
变式:(1)若角的顶点P在圆上,如图②所示,上述结论成立吗?请加以说明;
(2)若角的顶点P在圆内,如图③所示,上述结论成立吗?请加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰直角三角形AOB中腰OA=OB=6,将它放在一个平面直角坐标系内,如图所示,已知点P是AB边上一动点,点Q是OA边上的定点,OQ=4.设点P的坐标是(x,y),△OPQ的面积为S.
(1)求y与x的函数关系式;
(2)求S与x的函数关系式,并求出当S=10时,点P的坐标.

查看答案和解析>>

同步练习册答案