精英家教网 > 初中数学 > 题目详情

如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?

解析试题分析:要求AB的长,需要构造到直角三角形中.连接AB,作BC垂直于过A的水平线于C.在直角三角形ABC中,得AC=8-3+1=6,BC=5+2=7.再运用勾股定理计算即可.
过点B作BC⊥AC,垂足为C

观察图形可知AC=AF-MF+MC=8-3+1=6,BC=2+5=7

答:登陆点到宝藏埋藏点的直线距离是
考点:勾股定理的应用
点评:解此类题目的关键是构造直角三角形,利用勾股定理直接求解.注意所求距离实际上就是AB的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?

查看答案和解析>>

科目:初中数学 来源:2014届湖北省八年级下学期期中考试数学试卷(解析版) 题型:解答题

如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?

查看答案和解析>>

科目:初中数学 来源:专项题 题型:填空题

如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,则登陆点(A处)到宝藏埋藏点(B处)的直线距离是(    )km.

查看答案和解析>>

同步练习册答案