精英家教网 > 初中数学 > 题目详情
(2005•威海)已知抛物线y=(k-1)x2+(2+4k)x+1-4k过点A(4,0).
(1)试确定抛物线的解析式及顶点B的坐标;
(2)在y轴上确定一点P,使线段AP+BP最短,求出P点的坐标;
(3)设M为线段AP的中点,试判断点B与以AP为直径的⊙M的位置关系,并说明理由.
【答案】分析:(1)把A点坐标代入抛物线可得出k值以及点B坐标.
(2)由题意可得点A关于y轴对称的坐标A′,易求解析式.
(3)本题要靠辅助线的帮助.过点B作BE⊥OA于E,得出E为OA的中点,求出AP的长度,则可判断.
解答:解:(1)所求抛物线的解析式为:y=-x2+3x=-(x-2)2+3.
顶点B的坐标为(2,3).

(2)∵y=-x2+3x,
∴y=0时,解得x=4或0,
∴点A的坐标是(4,0),
∴关于y轴的对称点A′的坐标为(-4,0).
则直线A'B与y轴的交点就是P点.
设直线A'B的解析式为y=x+2.
∴P的坐标为(0,2).

(3)过点B作BE⊥OA于E,则BE∥OP.
由抛物线的对称性可知,点E为OA的中点.
直线BE与AP的交点就是AP的中点M.
AP=2,⊙M的半径R=
BM=3-1=2<
∴点B在⊙M的内部.
点评:本题考查的是圆的相关知识以及二次函数的综合运用,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2005•威海)已知抛物线y=(k-1)x2+(2+4k)x+1-4k过点A(4,0).
(1)试确定抛物线的解析式及顶点B的坐标;
(2)在y轴上确定一点P,使线段AP+BP最短,求出P点的坐标;
(3)设M为线段AP的中点,试判断点B与以AP为直径的⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省常州市中考数学模拟试卷(解析版) 题型:填空题

(2005•威海)已知双曲线y=经过点(-1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,那么b1     b2(选填“>”、“=”、“<”).

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(13)(解析版) 题型:解答题

(2005•威海)已知:如图1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直线AD,BC相交于点E.
(1)求∠E的度数;
(2)如果点C,D在⊙O上运动,且保持弦CD的长度不变,那么,直线AD,BC相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).
①如图2,弦AB与弦CD交于点F;
②如图3,弦AB与弦CD不相交;
③如图4,点B与点C重合.

查看答案和解析>>

科目:初中数学 来源:2005年山东省威海市中考数学试卷(解析版) 题型:解答题

(2005•威海)已知:如图1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直线AD,BC相交于点E.
(1)求∠E的度数;
(2)如果点C,D在⊙O上运动,且保持弦CD的长度不变,那么,直线AD,BC相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).
①如图2,弦AB与弦CD交于点F;
②如图3,弦AB与弦CD不相交;
③如图4,点B与点C重合.

查看答案和解析>>

同步练习册答案