10£®ÊýѧÎÊÌ⣺¼ÆËã$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+¡­+\frac{1}{{m}^{n}}$*£¨ÆäÖÐm£¬n¶¼ÊÇÕýÕûÊý£¬ÇÒm¡Ý2£¬n¡Ý1£©
̽¾¿ÎÊÌ⣺Ϊ½â¾öÉÏÃæµÄÊý×ÖÎÊÌ⣬ÎÒÃÇÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨£¬Í¨¹ý²»¶ÏµØ·Ö¸îÒ»¸öÃæ»ýΪ1µÄÕý·½ÐΣ¬°ÑÊýÁ¿¹ØÏµºÍ¼¸ºÎͼÐÎÇÉÃîµØ½áºÏÆðÀ´£¬²¢²Éȡһ°ãÎÊÌâÌØÊ⻯µÄ²ßÂÔÀ´½øÐÐ̽¾¿£®
̽¾¿Ò»£º¼ÆËã$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$
µÚ1´Î·Ö¸î£¬°ÑÕý·½ÐεÄÃæ»ý¶þµÈ·Ö£¬ÆäÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{1}{2}$£»
µÚ2´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐø¶þµÈ·Ö£¬ÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{1}{2}+\frac{1}{{2}^{2}}$£»
µÚ3´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐø¶þµÈ·Ö£¬¡­£»
¡­
µÚn´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý×îºó¶þµÈ·Ö£¬ËùÓÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$£¬×îºó¿Õ°×²¿·ÖµÄÃæ»ýÊÇ$\frac{1}{{2}^{n}}$£®
¸ù¾ÝµÚn´Î·Ö¸îͼ¿ÉµÃµÈʽ£º$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$£®

̽¾¿¶þ£º¼ÆËã$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+¡­+\frac{1}{{3}^{n}}$£®
µÚ1´Î·Ö¸î£¬°ÑÕý·½ÐεÄÃæ»ýÈýµÈ·Ö£¬ÆäÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{2}{3}$£»
µÚ2´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐøÈýµÈ·Ö£¬ÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{2}{3}+\frac{2}{{3}^{2}}$£»
µÚ3´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐøÈýµÈ·Ö£¬¡­£»
¡­
µÚn´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý×îºóÈýµÈ·Ö£¬ËùÓÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+¡­+\frac{2}{{3}^{n}}$£¬×îºó¿Õ°×²¿·ÖµÄÃæ»ýÊÇ$\frac{1}{{3}^{n}}$£®
¸ù¾ÝµÚn´Î·Ö¸îͼ¿ÉµÃµÈʽ£º$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+¡­+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$£®
Á½±ßͬ³ýÒÔ2£¬µÃ$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+¡­+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2¡Á{3}^{n}}$\

̽¾¿Èý£º¼ÆËã$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$£®
£¨·ÂÕÕÉÏÊö·½·¨£¬Ö»»­³öµÚn´Î·Ö¸îͼ£¬ÔÚͼÉϱê×¢ÒõÓ°²¿·ÖÃæ»ý£¬²¢Ð´³ö̽¾¿¹ý³Ì£©

½â¾öÎÊÌ⣺¸ù¾ÝÇ°ÃæÌ½¾¿½á¹û£º
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+¡­+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2¡Á{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3¡Á{4}^{n}}$£®
¡­
ÍÆ³ö£º$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+¡­+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{£¨m-1£©{m}^{n}}$£®£¨Ö»Ìî¿Õ£¬ÆäÖÐm¡¢n¶¼ÊÇÕýÕûÊý£¬ÇÒm¡Ý2£¬n¡Ý1£©
ÍØ¹ãÓ¦Ó㺼ÆËã$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+¡­+\frac{{5}^{n}-1}{{5}^{n}}$£®

·ÖÎö ¢Ù̽¾¿Èý£º¸ù¾Ý̽¾¿¶þ½øÐзָ·¨ÒÀ´Î½øÐзָȻºó±íʾ³öÒõ°µ²¿·ÖµÄÃæ»ý£¬ÔÙ³ýÒÔ3¼´¿É£»
¢ÚÍÆ³ö£º¸ù¾Ý̽¾¿¶þ½øÐзָ·¨ÒÀ´Î½øÐзָȻºó±íʾ³öÒõ°µ²¿·ÖµÄÃæ»ý£¬ÔÙ³ýÒÔm-1¼´¿É£»
¢ÛÍØ¹ãÓ¦ÓãºÏȰÑÿһ¸ö·ÖÊý»¯³É1¼õÈ¥Ò»¸ö·ÖÊý£¬È»ºóÓ¦Óù«Ê½¼ÆË㣮

½â´ð ½â£ºÌ½¾¿Èý£º¼ÆËã$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$£®
µÚ1´Î·Ö¸î£¬°ÑÕý·½ÐεÄÃæ»ýËĵȷ֣¬ÆäÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{3}{4}$£»
µÚ2´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐøËĵȷ֣¬ÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{3}{4}+\frac{3}{{4}^{2}}$£»
µÚ3´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐøËĵȷ֣¬¡­£»
¡­
µÚn´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý×îºóËĵȷ֣¬ËùÓÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{2}{3}$+$\frac{3}{4}+\frac{3}{{4}^{2}}+\frac{3}{{4}^{3}}+¡­+\frac{3}{{4}^{n}}$£¬×îºó¿Õ°×²¿·ÖµÄÃæ»ýÊÇ$\frac{1}{{4}^{n}}$£»
¸ù¾ÝµÚn´Î·Ö¸îͼ¿ÉµÃµÈʽ£º$\frac{3}{4}+\frac{3}{{4}^{2}}+\frac{3}{{4}^{3}}+¡­+\frac{3}{{4}^{n}}$=1-$\frac{1}{{4}^{n}}$£»
Á½±ßͬ³ýÒÔ3£¬µÃ$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3¡Á{4}^{n}}$£®

ÍÆ³ö£º$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+¡­+\frac{1}{{m}^{n}}$£¬
µÚ1´Î·Ö¸î£¬°ÑÕý·½ÐεÄÃæ»ýmµÈ·Ö£¬ÆäÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{m-1}{m}$£¬
µÚ2´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐømµÈ·Ö£¬ÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{m-1}{m}+\frac{m-1}{{m}^{2}}$£¬
µÚ3´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐømµÈ·Ö£¬¡­£¬
¡­
µÚn´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý×îºómµÈ·Ö£¬ËùÓÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{m-1}{m}+\frac{m-1}{{m}^{2}}+\frac{m-1}{{m}^{3}}+¡­+\frac{m-1}{{m}^{n}}$£¬×îºó¿Õ°×²¿·ÖµÄÃæ»ýÊÇ$\frac{1}{{m}^{n}}$£¬
¸ù¾ÝµÚn´Î·Ö¸îͼ¿ÉµÃµÈʽ£º$\frac{m-1}{m}+\frac{m-1}{{m}^{2}}+\frac{m-1}{{m}^{3}}+¡­+\frac{m-1}{{m}^{n}}$=1-$\frac{1}{{m}^{n}}$£¬
Á½±ßͬ³ýÒÔm-1£¬µÃ$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+¡­+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{£¨m-1£©{m}^{n}}$£»

¹Ê´ð°¸Îª£º$\frac{1}{3}$-$\frac{1}{3¡Á{4}^{n}}$£¬$\frac{1}{m-1}$-$\frac{1}{£¨m-1£©{m}^{n}}$£»
Ó¦Ó㺼ÆËã$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+¡­+\frac{{5}^{n}-1}{{5}^{n}}$£¬
=1-$\frac{1}{5}$+1-$\frac{1}{{5}^{2}}$+1-$\frac{1}{{5}^{3}}$+¡­+1-$\frac{1}{{5}^{n}}$£¬
=n-£¨$\frac{1}{4}$-$\frac{1}{4¡Á{5}^{n}}$£©£¬
=n-$\frac{1}{4}$+$\frac{1}{4¡Á{5}^{n}}$£®

µãÆÀ ±¾ÌâÒ»·½Ã濼²éÁËÊý×Ö¡¢Í¼Ðεı仯¹æÂÉ£¬Í¬Ê±»¹¿¼²éÁËÓ¦ÓÃÓëÉè¼Æ×÷ͼ£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬Àí½â·Ö¸îµÄ·½·¨Êǹؼü£¬ÔËÓÃÃæ»ý·¨½«´úÊýʽµÄºÍÏà¼Ó²¢¼ÆËã³ö½á¹û£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èô¶¨Òåa•b=ab+a+b£¬´Ó×óµ½ÓÒÒÀ´Î¼ÆËãx=1•2•3¡­£¨n-1£©•n£¬ÔòÂú×ãx£¾2016µÄ×îСÕýÕûÊýnÊÇ£¨¡¡¡¡£©
A£®6B£®7C£®8D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨1£©Èçͼ¢Ù£¬µÈ±ß¡÷ABCÖУ¬µãDÊÇAB±ßÉϵÄÒ»¶¯µã£¨µãDÓëµãB²»Öغϣ©£¬ÒÔCDΪһ±ß£¬ÏòÉÏ×÷µÈ±ß¡÷EDC£¬Á¬½ÓAE£®ÄãÄÜ·¢ÏÖÏß¶ÎAE¡¢ADÓëACÖ®¼äµÄÊýÁ¿¹ØÏµÂð£¿Ö¤Ã÷Äã·¢ÏֵĽáÂÛ£®
£¨2£©Àà±È²ÂÏ룺Èçͼ¢Ú£¬µ±¶¯µãDÔ˶¯ÖÁµÈ±ß¡÷ABC±ßBAµÄÑÓ³¤ÏßÉÏʱ£¬ÆäËû×÷·¨Ó루1£©Ïàͬ£¬²ÂÏëÏß¶ÎAE¡¢ADÓëACÖ®¼äµÄÊýÁ¿¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ë®¹ûµê½øÁË1ÅúË®¹û£¬Ô­°´50%µÄÀûÈóÂʶ¨¼Û£¬ÏúÈ¥Ò»°ëÒÔºóΪ¾¡¿ìÏúÍ꣬׼±¸´òÕÛ³öÊÛ£¬ÈôҪʹ×ÜÀûÈó²»µÍÓÚ30%£¬ÎÊÓàÏÂË®¹û¿É°´Ô­¶¨¼ÛµÄ¼¸ÕÛ³öÊÛ£¨¾«È·µ½0.1ÕÛ£©£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬¾ØÐÎABCDµÄ¶Ô½ÇÏßACÓëBDÏཻÓÚµãM£¬¾ØÐÎMNPQÓë¾ØÐÎABCDÈ«µÈ£¬ÉäÏßMNÓëMQ·Ö±ð½»BC±ßÓÚE¡¢FÁ½µã£¬ÈôAB=2£¬ÇóÖ¤£º$\frac{1}{M{E}^{2}}$+$\frac{1}{M{F}^{2}}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Éè¼ÆÒ»¸öÈçͼËùʾµÄ²Û¸×£¬½ØÃæABCDΪ¾ØÐΣ¬AB+BC+CD=80cm
£¨1£©Éè¾ØÐÎABCDµÄÒ»±ßAB=xcm£»Ãæ»ýΪycm2£¬ÊÔд³öy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£»
£¨2£©Çóµ±xΪºÎֵʱ£¬Ãæ»ýy×î´ó£¬×î´óֵΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔڵȱßÈý½ÇÐÎABCÖУ¬PÊÇ¡÷ABCµÄÒ»µã£¬PA=1£¬PB=$\sqrt{7}$£¬PC=2$\sqrt{2}$£¬Çó¡ÏAPBµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=CB£¬¡ÏABC=90¡ã£¬DΪABÑÓ³¤ÏßÉÏÒ»µã£¬µãEÔÚBC±ßÉÏ£¬ÇÒBE=BD£¬Á¬½áAE¡¢DE¡¢DC
£¨1£©Èô¡ÏCAE=30¡ã£¬Çó¡ÏBCDµÄ¶ÈÊý£®
£¨2£©ÇóÖ¤£ºAE¡ÍCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ì½Ë÷£º
£¨1£©Èç¹û$\frac{3x+4}{x+1}$=3+$\frac{m}{x+1}$£¬Ôòm=1£»
£¨2£©Èç¹û$\frac{5x-3}{x+2}$=5+$\frac{m}{x+2}$£¬Ôòm=-13£»
×ܽ᣺Èç¹û$\frac{ax+b}{x+c}$=a+$\frac{m}{x+c}$£¨ÆäÖÐa¡¢b¡¢cΪ³£Êý£©£¬Ôòmb-ac£»
Ó¦ÓãºÀûÓÃÉÏÊö½áÂÛ½â¾ö£ºÈô´úÊýʽ$\frac{4x-3}{x-1}$µÄֵΪÕûÊý£¬ÇóÂú×ãÌõ¼þµÄÕûÊýxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸