精英家教网 > 初中数学 > 题目详情
一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则a2+b2=c2
(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2
证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD
在△ABD中:AD2=AB2-BD2
在△ACD中:AD2=AC2-CD2
AB2-BD2=AC2-CD2
c2-(a-CD)2=b2-CD2
∴a2+b2-c2=2a•CD
∵a>0,CD>0
∴a2+b2-c2>0,所以:a2+b2>c2
(3)若∠C为钝角,试推导a2+b2与c2的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

【答案】分析:根据题意作图,用证明(2)的方法证明即可推导出a2+b2与c2的关系.
解答:解:(3)如图过A作AD⊥BC于D,则BD=BC+CD=a+CD
在△ABD中:AD2=AB2-BD2
在△ACD中:AD2=AC2-CD2
AB2-BD2=AC2-CD2
c2-(a+CD)2=b2-CD2
∴a2+b2-c2=-2a•CD
∵a>0,CD>0
∴a2+b2-c2<0
所以:a2+b2<c2

二、当∠C为钝角时,根据公式:<c<a+b可得,5<c<7;
当∠B为钝角时,根据公式:b-a<c<可得,1<c<
点评:此题主要考查学生对勾股定理在实际中的运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则a2+b2=c2
(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2
证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD
在△ABD中:AD2=AB2-BD2
在△ACD中:AD2=AC2-CD2
AB2-BD2=AC2-CD2
c2-(a-CD)2=b2-CD2
∴a2+b2-c2=2a•CD
∵a>0,CD>0
∴a2+b2-c2>0,所以:a2+b2>c2
(3)若∠C为钝角,试推导a2+b2与c2的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省淮安市清浦区清浦中学中考模拟试卷2数学试卷(带解析) 题型:解答题

一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则
(2)若∠C为为锐角,则的关系为:
证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD

在△ABD中:AD2=AB2-BD2
在△ACD中:AD2=AC2-CD2
AB2-BD2= AC2-CD2
c2-(-CD)2= b2-CD2

>0,CD>0
,所以:
(3)若∠C为钝角,试推导的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江省八里店二中九年级下学期期中考试数学试卷(带解析) 题型:解答题

一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则
(2)若∠C为为锐角,则的关系为:
(3)若∠C为钝角,试推导的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013届浙江省九年级下学期期中考试数学试卷(解析版) 题型:解答题

一、阅读理解:

在△ABC中,BC=a,CA=b,AB=c;

(1)若∠C为直角,则

(2)若∠C为为锐角,则的关系为:

(3)若∠C为钝角,试推导的关系.

二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省淮安市中考模拟试卷2数学试卷(解析版) 题型:解答题

一、阅读理解:

在△ABC中,BC=a,CA=b,AB=c;

(1)若∠C为直角,则

(2)若∠C为为锐角,则的关系为:

证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD

在△ABD中:AD2=AB2-BD2

在△ACD中:AD2=AC2-CD2

AB2-BD2= AC2-CD2

c2-(-CD)2= b2-CD2

>0,CD>0

,所以:

(3)若∠C为钝角,试推导的关系.

二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

 

查看答案和解析>>

同步练习册答案