精英家教网 > 初中数学 > 题目详情
26、在△ABC中,AB=AC,∠BAC=120°,P为BC的中点,小明拿着含有30°角的透明直角三角板,使30°角的顶点落在点P上,三角板绕P点旋转.
(1)如图1,当三角板的一直角边和斜边分别与AB、BC交于点E、F时,连接EF,请说明△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图2情形时,三角板的两边分别交BA的延长线、边AC于点E、F,连接EF.
①探究1:△BPE与△CFP相似吗?请说明理由;
②探究2:△BPE与△PFE相似吗?请说明理由.
分析:(1)找出△BPE与△CFP的对应角,其中∠BPE+∠CPF=150°,∠CPF+∠CFP=150°,得出∠BPE=∠CFP,从而解决问题;
(2)①小题同前可证,②小题可通过对应边成比例证明.
解答:证明:(1)∵在△ABC中,∠BAC=120°,AB=AC,
∴∠B=∠C=30°.
∵∠B+∠BPE+∠BEP=180°,
∴∠BPE+∠BEP=150°,
∴∠EPF=30°,
又∵∠BPE+∠EPF+∠CPF=180°,
∴∠BPE+∠CPF=150°,
∴∠BEP=∠CPF,
∴△BPE∽△CFP(两角对应相等的两个三角形相似).
(2)①△BPE∽△CFP;
②△BPE与△PFE相似.
下面证明结论:
同(1),可证△BPE∽△CFP,得 CPBE=PFPE,而CP=BP,因此 BPBE=PFPE.
又因为∠EBP=∠EPF,所以△BPE∽△PFE(两边对应成比例且夹角相等的两个三角形相似).
点评:这是一道操作探究题,它考查了相似三角形的判定.它以每位学生都有的30°三角板在图形上的运动为背景,既考查了学生图形旋转变换的思想,静中思动,动中求静的思维方法,又考查了学生动手实践、自主探究的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案