精英家教网 > 初中数学 > 题目详情
若已知|a+2|+|b-3|+|c-4|=0,则式子a+2b+3c的值为
 
分析:根据非负数的性质列式求出a、b、c的值,然后代入代数式进行计算即可得解.
解答:解:根据题意得,a+2=0,b-3=0,c-4=0,
解得a=-2,b=3,c=4,
所以,a+2b+3c=-2+2×3+3×4=-2+6+12=-2+18=-16.
故答案为:-16.
点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.
(1)求这条抛物线的解析式;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外.

查看答案和解析>>

科目:初中数学 来源: 题型:

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,其中a1•a2≠0.当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(-1,0),B(1,0).我们记过三点的二次函数的图象为“C□□□”(“□□□”中填写相应三个点的字母).如过点A、B、M三点的二次函数的图象为CABM
精英家教网
(1)如果已知M(0,1),△ABM≌△ABN.请通过计算判断CABM与CABN是否为全等抛物线;
(2)①若已知M(0,n),在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.求抛物线CABM的解析式,然后请直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM?根据以上的探究结果,在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.然后请列出所有满足过平行四边形中三个顶点且能与CABM全等的抛物线C□□□”.

查看答案和解析>>

科目:初中数学 来源: 题型:

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,
b
sinB
=
c
sinC
.同理有
c
sinC
=
a
sinA
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC
…(*)
即:在一个三角形中,各边和它所对角的正弦的比相等.
(1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:
第一步:由条件a、b、∠A
用关系式
 
求出
∠B;
第二步:由条件∠A、∠B
用关系式
 
求出
∠C;
第三步:由条件
 
用关系式
 
求出
c.
(2)如图,已知:∠A=60°,∠C=75°,a=6,运用上述结论(*)试求b.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AB∥CD,E是AD的中点,EF∥CB交AB于点F,若已知BC=4cm,则EF的长为
2
2
cm.

查看答案和解析>>

同步练习册答案