1£®Èç¹û½«¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}2x+\begin{array}{l}{\begin{array}{l}{\;}¡ö{y=3}\end{array}}\end{array}\\ \begin{array}{l}{\;}¡ö{x+y=3}\end{array}\end{array}\right.$£¬µÄµÚÒ»¸ö·½³ÌÖÐyµÄϵÊýÕÚס£¬µÚ¶þ¸ö·½³ÌÖÐxµÄϵÊýÕÚס£¬²¢ÇÒ$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$ÊÇÕâ¸ö·½³Ì×éµÄ½â£¬ÄãÄÜÇó³öÔ­·½³Ì×éÂð£¿

·ÖÎö ÉèyµÄϵÊýΪa£¬xµÄϵÊýΪb£¬°Ñ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$´úÈë·½³Ì×é$\left\{\begin{array}{l}{2x+ay=3}\\{bx+y=3}\end{array}\right.$µÃ³ö$\left\{\begin{array}{l}{4+a=3}\\{2b+1=3}\end{array}\right.$£¬Çó³ö·½³Ì×éµÄ½â£¬¼´¿ÉµÃ³ö´ð°¸£®

½â´ð ½â£ºÉèyµÄϵÊýΪa£¬xµÄϵÊýΪb£¬
°Ñ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$´úÈë·½³Ì×é$\left\{\begin{array}{l}{2x+ay=3}\\{bx+y=3}\end{array}\right.$µÃ£º$\left\{\begin{array}{l}{4+a=3}\\{2b+1=3}\end{array}\right.$£¬
½âµÃ£ºa=-1£¬b=1£¬
ËùÒÔÔ­·½³Ì×éΪ$\left\{\begin{array}{l}2x-y=3\\ x+y=3\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬½â¶þÔªÒ»´Î·½³Ì×éµÄÓ¦Óã¬ÄÜÀí½â¶þÔªÒ»´Î·½³Ì×é½âµÄ¶¨ÒåÊǽâ´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬µÈ±ß¡÷ABCÑØÉäÏßBCÏòÓÒÆ½ÒƵ½¡÷DCEµÄλÖã¬Á¬½ÓAD£¬BD£¬ÔòÏÂÁнáÂÛ£º
¢ÙAD=BC=CE£»
¢ÚBD£¬AC»¥ÏàÆ½·Ö£»
¢ÛËıßÐÎACEDÊÇÁâÐΣ»
¢ÜËıßÐÎABEDµÄÃæ»ýΪ$\frac{3\sqrt{3}}{4}$AB2£®
ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬Ä³»¬°å°®ºÃÕßѵÁ·Ê±µÄбÆÂʾÒâͼ£¬³öÓÚ°²È«ÒòËØ¿¼ÂÇ£¬¾ö¶¨½«ÑµÁ·µÄбÆÂµÄÇã½ÇÓÉ45¡ã½µÎª30¡ã£¬ÒÑ֪ԭбÆÂÆÂÃæABµÄ³¤Îª5Ã×£¬µãD¡¢B¡¢C ÔÚͬһˮƽµØÃæÉÏ£®
£¨1£©¸ÄÉÆºóбÆÂÆÂÃæAD±ÈԭбÆÂÆÂÃæAB»á¼Ó³¤¶àÉÙÃ×£¿£¨¾«È·µ½0.01£©
£¨2£©ÈôбÆÂµÄÕýǰ·½ÄÜÓÐ3Ã׳¤µÄ¿ÕµØ¾ÍÄܱ£Ö¤°²È«£¬ÒÑ֪ԭбÆÂABµÄǰ·½ÓÐ6Ã׳¤µÄ¿ÕµØ£¬½øÐÐÕâÑùµÄ¸ÄÔìÊÇ·ñ¿ÉÐУ¿ËµÃ÷ÀíÓÉ£® £¨²Î¿¼Êý¾Ý£º$\sqrt{2}$=1.414£¬$\sqrt{3}=1.732$£¬$\sqrt{6}$=2.449 £©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁг¤¶ÈµÄ¸÷×éÏß¶ÎÄÜ×é³ÉÒ»¸öÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
A£®3cm£¬5cm£¬8cmB£®1cm£¬2cm£¬3cmC£®4cm£¬5cm£¬10cmD£®3cm£¬4cm£¬5cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬Å×ÎïÏßy=-x2-2x+3ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©ÇóµãA¡¢B¡¢CµÄ×ø±ê£»
£¨2£©ÉèDΪxÖáÉϵÄÈÎÒâÒ»µã£¨Aµã³ýÍ⣩£¬µ±¡÷DCBÓë¡÷ACBÏàËÆÊ±£¬ÇóµãDµÄ×ø±ê£»
£¨3£©ÈôÖ±Ïßl¹ýµãP £¨4£¬0 £©£¬QΪֱÏßlÉϵ͝µã£¬µ±ÒÔA¡¢B¡¢QΪ¶¥µãËù×÷µÄÖ±½ÇÈý½ÇÐÎÓÐÇÒÖ»ÓÐÈý¸öʱ£¬ÇóÖ±ÏßlµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈýÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}x-y=1\\ y-z=1\\ x+z=6\end{array}\right.$µÄ½âÊÇ$\left\{\begin{array}{l}{x=4}\\{y=3}\\{z=2}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ÆË㣺
£¨1£©$\sqrt{8}+£¨\sqrt{2}-1£©+{£¨\frac{1}{2}£©^0}$
£¨2£©$£¨2+\sqrt{3}£©£¨2-\sqrt{3}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬¡ÏBADµÄƽ·ÖÏß½»BCÓÚµãE£¬¡ÏABCµÄƽ·ÖÏß½»ADÓÚµãF£¬ÈôBF=12£¬AB=10£¬ÔòAEµÄ³¤Îª£¨¡¡¡¡£©
A£®13B£®14C£®15D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÎªÁ˽âÎÒÊÐÊÐÇø¼°Öܱ߽ü170ÍòÈ˵ijöÐÐÇ飬¿ÆÑ§¹æ»®¹ìµÀ½»Í¨£®5Ô·ݣ¬400Ãûµ÷²éÕß×ß1Íò»§¼ÒÍ¥£¬·¢·Å3Íò·ÝÎÊ¾í£¬½øÐе÷²éµÇ¼Ç£®µ÷²éÖеÄÑù±¾ÈÝÁ¿ÊÇ£¨¡¡¡¡£©
A£®170B£®400C£®1ÍòD£®3Íò

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸