精英家教网 > 初中数学 > 题目详情
先填空后计算:
1
n
- 
1
n+1
=
 
1
n+1
-
1
n+2
=
 
1
n+2
-
1
n+3
=
 

②计算:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+…+
1
(n+2007)(n+2008)
分析:①先通分成同分母的分式,再进行加减运算;
②根据题意得出规律:
1
n(n+1)
=
1
n
- 
1
n+1
;将每一项展开,再合并计算即可.
解答:解:①原式=
n+1-n
n(n+1)
=
1
n(n+1)

原式=
n+2-n-1
(n+1)(n+2)
=
1
(n+1)(n+2)

原式=
n+3-n-2
(n+2)(n+3)
=
1
(n+2)(n+3)

②原式=
1
n
- 
1
n+1
+
1
n+1
-
1
n+2
+
1
n+2
-
1
n+3
+…+
1
n+2007
-
1
n+2008

=
1
n
-
1
n+2008

=
n+2008-n
n(n+2008)

=
2008
n(n+2008)
点评:本题考查了分式的加减运算,先找出规律是解决此题的关键.
练习册系列答案
相关习题

同步练习册答案