精英家教网 > 初中数学 > 题目详情
如图,直角坐标系中,正方形CDEF的边长为4,且CDy轴,直线y=-
1
2
x-1过点C,且交x轴,y轴于点A、B,若点P沿正方形ABCD运动一周,则以P为圆心、
5
为半径的圆动与直线CB相切的次数为(  )
A.一次B.两次C.三次D.四次

如图,作PH⊥BC于H,GM⊥BC与M,PN⊥CF,
∴∠PHS=∠GMC=∠PNC=90°.
∵四边形CDEF是正方形,
∴∠E=∠F=∠FCD=∠D=90°,CD=DE=EF=CF=4.CDy轴,
∴∠HPN=∠MGC=∠BAO,
∵直线y=-
1
2
x-1,当y=0时,x=-2,
当x=0时,y=-1,
∴A(-2,0),B(0,-1),
∴OA=2,OB=1,
∴tan∠OAB=
1
2

∴tan∠HPN=tan∠MGC=
1
2

当PH=
5
时,HS=
5
2

在Rt△PHS中,由勾股定理得:
PS=
5
2

∴SN=
3
2

∴NC=3,
∴PD=3,
∴P点运动到离D点的距离为3时,⊙P与直线相切,
当P点运动到G点,GM=
5
时,则MA=
5
2

在Rt△GMC中,由勾股定理,得
GC=
5
2

∴DG=
3
2

∴P点运动到离D点的距离为
3
2
时,⊙P与直线相切,
∴⊙P与直线CB相切2次.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

水库的库容通常是用水位的高低来预测的.下表是某市一水库在某段水位范围内的库容与水位高低的相关水文资料,请根据表格提供的信息回答问题.
水位高低x(单位:米)10203040
库容y(单位:万立方米)3000360042004800
(1)将上表中的各对数据作为坐标(x,y),在给出的坐标系中用点表示出来:
(2)用线段将(1)中所画的点从左到右顺次连接.若用此图象来模拟库容y与水位高低x的函数关系.根据图象的变化趋势,猜想y与x间的函数关系,求出函数关系式并加以验证;
(3)由于邻近市区连降暴雨,河水暴涨,抗洪形势十分严峻,上级要求该水库为其承担部分分洪任务约800万立方米.若该水库当前水位为65米,且最高水位不能超过79米.请根据上述信息预测:该水库能否承担这项任务并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:
在平面直角坐标系中,已知x轴上两点A(x1,0),B(x2,0)的距离记作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意两点,我们可以通过构造直角三角形来求AB间距离.
如图,过A,B分别向x轴,y轴作垂线AM1、AN1和BM2、BN2,垂足分别是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直线AN1交BM2于Q点,在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意两点[A(x1,y1),B(x2,y2)]间距离公式为:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接应用平面内两点间距离公式计算,点A(1,-3),B(-2,1)之间的距离为______;
(2)平面直角坐标系中的两点A(1,3)、B(4,1),P为x轴上任一点,当PA+PB最小时,直接写出点P的坐标为______,PA+PB的最小值为______;
(3)应用平面内两点间距离公式,求代数式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B的坐标分别A(-2
3
,0)、B(-2
3
,2),∠CAO=30°.
(1)求对角线AC所在的直线的函数表达式;
(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;
(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知在直角坐标系中,A(0,2),F(-3,0),D为x轴上一动点,过点F作直线AD的垂线FB,交y轴于B,点C(2,
5
2
)为定点,在点D移动的过程中,如果以A,B,C,D为顶点的四边形是梯形,则点D的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲乙两车先后都以60km/h的速度从M地将一批物品运往N地.两车出发后,发货站发现甲车遗漏一件物品,遂派丙车将遗漏物品送达甲车.丙车完成任务后,即沿原路返回(物品交接时间忽略不计).如图表示三辆车离M地的距离s(km)随时间t(min)变化的图象.
请根据图象进行以下探究:
信息读取
(1)说明图象中点B的实际意义;
图象理解
(2)甲车出发多长时间后被丙车追上?此时追及点距M地多远?
问题解决
(3)丙车与乙车在距离M地多远处迎面相遇?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=-x+2与x轴,y轴分别相交于A、B两点,另一直线y=kx+b经过B和点C,将△AOB面积分成相等的两部分,求k和b的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
3
4
x+6
与x轴、y轴交于A、B两点,M是直线AB上的一个动点,MC⊥x轴于C,MD⊥y轴于D,若点M的横坐标为a.
(1)当点M在线段AB上运动时,用a的代数式表示四边形OCMD的周长;
(2)在(1)的条件下,求四边形OCMD面积的最大值;
(3)以M为圆心MD为半径的⊙M与以A为圆心AC为半径的⊙A相切时,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是(  )
A.y=-2x+24(0<x<12)B.y=-
1
2
x+12(0<x<24)
C.y=2x-24(0<x<12)D.y=
1
2
x-12(0<x<24)

查看答案和解析>>

同步练习册答案