精英家教网 > 初中数学 > 题目详情

正△ABC的边长为12cm,则它的外接圆的半径为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C.连接OA,则在直角△OAC中,∠O=180°÷n.OC是边心距r,OA即半径R.AB=2AC=a.根据三角函数即可求解.
解答:连接中心和顶点,作出边心距.
那么得到直角三角形在中心的度数为:360÷3÷2=60°,那么外接圆半径是12÷2÷sin60°=4
故选D.
点评:考查了正多边形和圆,做正多边形和圆的问题时,应连接圆心和正多边形的顶点,作出边心距,得到和中心角一半有关的直角三角形进行求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

正△ABC的边长为1,P在AB上,PQ⊥BC,QR⊥AC,RS⊥AB.其中Q、R、S为垂足,若SP=
1
4
,则AP的长是(  )
A、
2
9
B、
5
9
C、
1
9
D、
5
9
1
9

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,精英家教网交BC于点P.
(1)求证:DP=PE;
(2)若D为AC的中点,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为
 
cm.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是正三角形,曲线CDEFG…叫做“正三角形的渐开线”,其中
CD
DE
EF
、…
的圆心精英家教网依次为A、B、C….当渐开线延伸开时,形成三个扇形S1、S2、S3和一系列扇环S4、S5、…若正△ABC的边长为1.
(1)求出曲线CDEFG的总长度.
(2)求出扇环S4的面积.

查看答案和解析>>

同步练习册答案