精英家教网 > 初中数学 > 题目详情
(2008•梅州)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB( )

A.是正方形
B.是长方形
C.是菱形
D.以上答案都不对
【答案】分析:根据垂径定理和特殊四边形的判定方法求解.
解答:解:由垂径定理知,OC垂直平分AB,即OC与AB互相垂直平分,所以四边形OACB是菱形.
故选C.
点评:本题综合考查了垂径定理和菱形的判定方法.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《圆》(10)(解析版) 题型:解答题

(2008•梅州)如图所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.
(1)求直线L所对应的函数的表达式;
(2)若以O为圆心,半径为R的圆与直线L相切,求R的值.

查看答案和解析>>

科目:初中数学 来源:2010年云南省保山市隆阳区中考数学模拟试卷(解析版) 题型:解答题

(2008•梅州)如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

查看答案和解析>>

科目:初中数学 来源:2009年云南省楚雄州双柏县中考数学模拟试卷2(教研室 郎绍波)(解析版) 题型:解答题

(2008•梅州)如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

查看答案和解析>>

科目:初中数学 来源:2008年广东省梅州市中考数学试卷(解析版) 题型:解答题

(2008•梅州)如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

查看答案和解析>>

科目:初中数学 来源:2008年广东省梅州市中考数学试卷(解析版) 题型:解答题

(2008•梅州)如图所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.
(1)求直线L所对应的函数的表达式;
(2)若以O为圆心,半径为R的圆与直线L相切,求R的值.

查看答案和解析>>

同步练习册答案