证明:(1)连接OE,

∵OD=OE,
∴∠ODE=∠OED,
∵BD=BF,
∴∠ODE=∠F,
∴∠OED=∠F,
∴OE∥BF,
∴∠AEO=∠ACB=90°,
∴AC与⊙O相切;
(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,
∴△AOE∽△ABC,
∴

,
设⊙O的半径为r,则

,
解得:r=4,
∴⊙O的面积π×4
2=16π.
分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;
(2)证△AEO∽△ACB,得出关于r的方程,求出r即可.
点评:本题考查了等腰三角形的性质,切线的判定,平行线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理和计算能力,用了方程思想.