按要求的方法解下列方程
(1)3(x-2)2=54 (直接开平方法)
(2)2x2-4x-1=0 (公式法)
(3)3x2-3=-8x (配方法)
(4)3x(x-1)=2-2x(因式分解法)
【答案】
分析:(1)化为(x-2)
2=18的形式,再直接开平方求得结果;
(2)得到一般式后,再代入求根公式计算即可;
(3)先移项,再将二次项系数化为1,方程两边都加上一次项系数的一半,凑成完全平方公式,再开方即可;
(4)先去括号,然后用因式分解法解方程即可.
解答:解:(1)(x-2)
2=18,
开方得,x-2=±3

,
解得x
1=2+3

,x
2=2-3

;
(2)∵a=2,b=-4,c=-1,
∴x=

,
=

,
=

,
=

,
∴x
1=

,x
2=

;
(3)移项得,3x
2+8x=3,
二次项系数化为1得,x
2+

x=1,
配方得,x
2+

x+(

)
2=1+(

)
2,
即(x+

)
2=

,
开方得,x+

=±

,
即x
1=

,x
2=-3;
(4)整理得,3x
2-x-2=0,
(x-1)(3x+2)=0,
即x-1=0或3x+2=0,
解得x
1=1,x
2=-

.
点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.