精英家教网 > 初中数学 > 题目详情
(2013•昆明)已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.
分析:(1)连接OB,求出∠ABC=90°,∠PBA=∠OBC=∠OCB,推出∠PBO=90°,根据切线的判定推出即可;
(2)证△PBO和△ABC相似,得出比例式,代入求出即可.
解答:(1)证明:连接OB,
∵AC是⊙O直径,
∴∠ABC=90°,
∵OC=OB,
∴∠OBC=∠ACB,
∵∠PBA=∠ACB,
∴∠PBA=∠OBC,
即∠PBA+∠OBA=∠OBC+∠ABO=∠ABC=90°,
∴OB⊥PB,
∵OB为半径,
∴PB是⊙O的切线;

(2)解:设⊙O的半径为r,则AC=2r,OB=r,
∵OP∥BC,∠OBC=∠OCB,
∴∠POB=∠OBC=∠OCB,
∵∠PBO=∠ABC=90°,
∴△PBO∽△ABC,
OP
AC
=
OB
BC

8
2r
=
r
2

r=2
2

即⊙O的半径为2
2
点评:本题考查了等腰三角形性质,平行线性质,相似三角形的性质和判定,切线的判定等知识点的应用,主要考查学生的推理能力,用了方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•昆明)已知正比例函数y=kx的图象经过点A(-1,2),则正比例函数的解析式为
y=-2x
y=-2x

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有
8
8
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昆明)已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.
求证:AB=CD.

查看答案和解析>>

同步练习册答案