精英家教网 > 初中数学 > 题目详情

在⊙O中,任意作一条直径AB,分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O相交,这样可以把⊙O

[  ]

A.4等分
B.5等分
C.6等分
D.7等分

答案:C
解析:

弦长等于半径时,该弦所对的圆心角为60°.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•连云港)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)

问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(
9
2
9
2
)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平面直角坐标系中,过点P(0,2)任意作一条与抛物线y=ax2(a>0)交于两点的直线,设交点分别为A,B,若∠AOB=90°.
(1)判断A,B两点纵坐标的乘积是否为一个确定的值,并说明理由;
(2)确定抛物线y=ax2(a>0)的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,E、D分别为AB、AC上的点,且ED∥BC,O为DC中点,连结EO并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF
精英家教网
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:
 

(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、(
9
2
9
2
)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

在⊙O中,任意作一条直径AB,分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O相交,这样可以把⊙O


  1. A.
    4等分
  2. B.
    5等分
  3. C.
    6等分
  4. D.
    7等分

查看答案和解析>>

同步练习册答案