精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的面积为12,M是AB的中点,连AC、DM,则图中阴影部分的面积是


  1. A.
    6
  2. B.
    4.8
  3. C.
    4
  4. D.
    3
C
分析:首先设DM与AC交于点E,由四边形ACD是正方形,易证得△AME∽△CDE,又由M是AB的中点,根据相似三角形的对应边成比例,可得=,又由正方形ABCD的面积为12,可求得△ACM的面积,然后利用等高三角形的面积比等于对应底的比,即可求得△AED与△CEM的面积.
解答:解:设DM与AC交于点E,
∵四边形ACD是正方形,
∴AM∥CD,AB=CD,
∴△AME∽△CDE,
∵M是AB的中点,
∴AM:CD=1:2,
=
∵S正方形ABCD=12,
∴S△ABC=S正方形ABCD=6,
∴S△ACM=S△ABC=3,
∴S△AEM=S△ACM=1,S△CEM=S△ACM=2,
∴S△AED=2S△AEM=2,
∴图中阴影部分的面积是:S△CEM+S△AED=2+2=4.
故选C.
点评:此题考查了相似三角形的判定与性质以及正方形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案