精英家教网 > 初中数学 > 题目详情
(1)如图①所示,圆内接△ABC中,AB=BC=CA,OD、OE为⊙的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC面积的
(2)如图②中所示,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的
证明:(1)连结OA、OC,
∵点O是等边三角形ABC的外心
∴Rt△OFC≌Rt△OGC≌Rt△OCA
S四边形OFCG=2S△OFC=S△OAC

(2)如图2,不妨设OD交BC于点F,OE交AC于点G,
作OH⊥BC,OK⊥AC,垂足分别为点H、K,
在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°,
∴∠HOK=360°-90°-90°-60°=120°即∠1+∠2=120°,
又∵∠GOF=∠2+∠3=120°,
∴∠1=∠3,
∵AC=BC,
∴OH=OK,
∴△OFH≌△OGK,
∴S四边形OFCG=S四边形OHCK=S△ABC
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
   李老师提出一个问题:“已知:如图1,AB=m(m>0),∠BAC=α(α为锐角),在射线AC上取一点D,使构成的△ABD唯一确定,试确定线段BD的取值范围.”
   小明同学说出了自己的解题思路:以点B为圆心,以m为半径画圆(如图2所示),D为⊙B与射线AC的交点(不与点A重合),连结BD,所以,当BD=m时,构成的△ABD是唯一确定的.
    李老师说:“小明同学画出的三角形是正确的,但是他的解答不够全面.”

对于李老师所提出的问题,请给出你认为正确的解答(写出BD的取值范围,并在备用图中画出对应的图形,不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海淀区一模)如图1所示,圆上均匀分布着11个点A1,A2,A3,…,A11.从A1起每隔k个点顺次连接,当再次与点A1连接时,我们把所形成的图形称为“k+1阶正十一角星”,其中1≤k≤8(k为正整数).例如,图2是“2阶正十一角星”,那么∠A1+∠A2+…+∠A11=
1260°
1260°
;当∠A1+∠A2+…+∠A11=900°时,k=
2或7
2或7

查看答案和解析>>

科目:初中数学 来源: 题型:

数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.

查看答案和解析>>

科目:初中数学 来源:期末题 题型:单选题

如图2所示,圆O的弦AB垂直平分半径OC.则四边形OACB
[     ]
A.是正方形
B.是长方形
C.是菱形
D.以上答案都不对

查看答案和解析>>

科目:初中数学 来源:同步题 题型:填空题

要修一段如图1所示的圆弧形弯道,它的半径是48m,圆弧所对的圆心角是60°,那么这段弯道长(    )m(保留π)。

查看答案和解析>>

同步练习册答案