精英家教网 > 初中数学 > 题目详情
如图:矩形ABCD的顶点B、C在x轴的正半轴上,A、D在抛物线y=-
2
3
x2+
8
3
x上,矩形的顶点均为动点,且矩形在抛物线与x轴围成的区域里.
(1)设点A的坐标为(x,y),试求矩形的周长p关于变量x的函数的解析式,并写出x的取值范围;
(2)是否存在这样的矩形ABCD,它的周长p=9?试证明你的结论.
(1)令-
2
3
x2+
8
3
x=0,
得:x1=0,x2=4,
则抛物线与坐标轴两交点的坐标为O(0,0)和E(4,0),
设OB=x(0<x<2),由抛物线的对称性可知EC=x,则BC=4-2x,
P=2(4-2x+y)=2(4-2x-
2
3
x2+
8
3
x)=-
4
3
x2+
4
3
x+8(0<x<2).

(2)不存在.
先假设存在周长为9的矩形ABCD,则-
4
3
x2+
4
3
x+8=9,
化简得:4x2-4x+3=0,
则有△=16-48<0,
∴方程无实数根,即不存在这样的矩形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过点(1,0),(-5,0),且顶点纵坐标为
9
2
,这个二次函数的解析式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在平面直角坐标系中,抛物线y=-
1
4
x2+bx+3
交x轴于A、B两点,交y轴于点C,且对称轴为x=-2,点P(0,t)是y轴上的一个动点.

(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,二次函数的顶点为C(4,-3),且在x轴上截得的线段AB=6,则二次函数的表达式为______;若抛物线与y轴交于点D,则四边形DACB的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=
1
18
x2-
4
9
x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DEOA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<
9
2
时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD的长AB=5cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A,A是抛物线y=
1
2
x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,CB2交抛物线于点A2

(1)如图1,已知A1,A3两点的横坐标依次为1,3,求线段CA2的长;
(2)如图2,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,且A1,A2,A3三点的横坐标为连续的整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c(a>0),A1,A2,A3三点的横坐标为连续整数,其他条件不变,试猜想线段CA2的长(用a,b,c表示,并直接写出答案).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.那么使得M=1的x值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现,若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱.
①写出平均每天的销售量y与每箱售价x之间关系;
②求出商场平均每天销售这种牛奶的利润w与每箱售价x之间的关系;
③求在②的情况下当牛奶每箱售价定为多少时可达到最大利润,最大利润是多少元?

查看答案和解析>>

同步练习册答案