精英家教网 > 初中数学 > 题目详情
22、设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根.问:是否存在实数k,使得3x1•x2-x1>x2成立,请说明理由.
分析:由于x1、x2是关于x的方程x2-4x+k+1=0的两个实数根,利用判别式可以确定k的一个取值范围,同时利用根与学生的关系和已知条件也可以确定k的一个取值范围,然后即可解决题目问题.
解答:解:∵x的方程x2-4x+k+1=0的两个实数根,
∴△=16-4(k+1)≥0,
∴k≤3,
又3x1•x2-x1>x2
∴3x1•x2-(x1+x2)>0,
而x1+x2=4,x1•x2=k+1,
∴3×4-(k+1)>0,
∴k<11,
∴k≤3,
∴存在实数k,使得3x1•x2-x1>x2成立.
点评:此题主要考查了一元二次方程的判别式和根与系数的关系,思想利用判别式求出k的一个取值范围,然后利用已知条件和根与系数的关系得到k的一个取值范围,然后就可以确定k是否存在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、设x1、x2是关于x的一元二次方程x2+ax+a+3=0的两个实数根,则x12+x22的最小值为
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1、x2是关于x的一元二次方程x2+ax+a=2的两个实数根,则(x1-2x2)(x2-2x1)的最大值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+x+n-2=mx的两个实数根,且x1<0,x2-3x1<0,则(  )
A、
m>1
n>2
B、
m>1
n<2
C、
m<1
n>2
D、
m<1
n<2

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?

查看答案和解析>>

同步练习册答案