精英家教网 > 初中数学 > 题目详情
3.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=30°;如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=60°;
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,则∠EAF=90°;在△AEF中,如果有一个角是另一个角的$\frac{3}{2}$倍,求∠ABO的度数.

分析 (1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=$\frac{1}{2}$∠PAB,∠ABC=$\frac{1}{2}$∠ABM,于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,根据三角形的内角和即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=$\frac{1}{2}$∠BAO,∠EOQ=$\frac{1}{2}$∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的$\frac{3}{2}$倍分两种情况进行分类讨论.

解答 解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=$\frac{1}{2}$∠PAB,∠ABC=$\frac{1}{2}$∠ABM,
∴∠BAC+∠ABC=$\frac{1}{2}$(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,
∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO=$\frac{1}{2}$∠BAO,∠EOQ=$\frac{1}{2}$∠BOQ,
∴∠E=∠EOQ-∠EAO=$\frac{1}{2}$(∠BOQ-∠BAO)=$\frac{1}{2}$∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=90°.  
在△AEF中,
∵有一个角是另一个角的$\frac{3}{2}$倍,故有:
①∠EAF=$\frac{3}{2}$∠F,∠E=30°,∠ABO=60°;
②∠F=$\frac{3}{2}$∠E,∠E=36°,∠ABO=72°;
∴∠ABO为60°或72°.

点评 本题考查了翻折变换-折叠问题,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,AB=AC,D是边BC上一点,DE⊥AB,DF⊥AC,垂足分别是E、F,△AEF∽△ABC.
(1)求证:△AED≌△AFD;
(2)若BC=2AD,求证:四边形AEDF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是(  )
A.19,7,14B.11,20,19C.14,7,19D.7,14,19 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.对于任意有理数a、b、c、d,我们规定符号(a,b)?(c,d)=ad-bc,
例如:(1,3)?(2,4)=1×4-2×3=-2.
(1)求(-2,3)?(4,5)的值为-22;
(2)求(3a+1,a-2)?(a+2,a-3)的值,其中a2-4a+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在等边△ABC中,点D为BC边上一点,请你用量角器,在AC边上确定点E,使AE=CD,简述你的作法,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)解分式方程:$\frac{x-2}{x+2}$-$\frac{16}{{{x^2}-4}}$=1
(2)先化简,再求值:$\frac{{x}^{2}+2x+1}{{x}^{2}-1}$-$\frac{x}{x-1}$,其中x满足不等式组$\left\{\begin{array}{l}x-1≥0\\ x-3<0\end{array}$且x为整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.
(1)求证:四边形ABCD是正方形;
(2)求证:三角形ECF的周长是四边形ABCD周长的一半;
(3)若EC=FC=1,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图.在正方形ABCD中,点E是BC边上的中点,EF⊥AC于点F.连接DF并延长交BC于G.过F作FM⊥DG交CD于N,交BC的延长线于点M.
(1)求证:△FEG≌△FCN;
(2)猜想CG与EG的数量关系.并说明理由;
(3)若AB=6.求△FCM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知∠A=∠C,∠1与∠2互补,求证:AB∥CD.
要求:写出推理步骤和每一步的推理依据.

查看答案和解析>>

同步练习册答案