精英家教网 > 初中数学 > 题目详情
如图(a),已知AB是⊙O的直径,CB是⊙O的切线,B为切点,D是⊙O上一点(不A、B重合).
(1)求证:∠DAB=∠DBC;
(2)若AB不是⊙O的直径,其它条件不变,(1)中的结论还成立吗?若成立,则给出你的证明;若不成立,请说明理由.
分析:(1)由AB是⊙O的直径,CB是⊙O的切线,易得∠D=90°,AB⊥BC,然后由同角的余角相等,即可证得:∠DAB=∠DBC;
(2)首先作直径BE,连接DE,同(1),可证得∠BED=∠DBC,又由圆周角定理,可得∠BED=∠DAB,则可证得∠DAB=∠DBC.
解答:(1)证明:∵AB是⊙O的直径,CB是⊙O的切线,
∴∠D=90°,AB⊥BC,
∴∠DAB+∠ABD=90°,∠ABD+∠DBC=90°,
∴∠DAB=∠DBC;

(2)成立.
理由:如图2,作直径BE,连接DE,
∵BE是⊙O的直径,CB是⊙O的切线,
∴∠BDE=90°,BE⊥BC,
∴∠BED+∠EBD=90°,∠EBD+∠DBC=90°,
∴∠BED=∠DBC,
∵∠BED=∠DAB,
∴∠DAB=∠DBC;

如图3,作直径BE,连接DE,
∵BE是⊙O的直径,CB是⊙O的切线,
∴∠BDE=90°,BE⊥BC,
∴∠BED+∠EBD=90°,∠EBD+∠DBC=90°,
∴∠BED=∠DBC,
∵∠BED=∠DAB,
∴∠DAB=∠DBC.
点评:此题考查了切线的性质以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,△ACD中,已知AB⊥CD,且BD>CB,△BCE和△ABD都是等腰直角三角形,王刚同学说有下列全等三角形:
①△ABC≌△DBE;②△ACB≌△ABD;
③△CBE≌△BED;④△ACE≌△ADE.
这些三角形真的全等吗?简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,?ABCD中,已知AB=9cm,AD=6cm,BE平分∠ABC交DC边于点E,则DE等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,△ABC中,已知AB=AC=x,BC=6,则腰长x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

同步练习册答案