精英家教网 > 初中数学 > 题目详情

已知:如图,一次函数数学公式与反比例函数数学公式的图象在第一象限的交点为A(3,n).
(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连接OA,求∠BAO的度数.

解:(1)∵的图象过点A(3,n),

∵一次函数的图象过点A(3,n),


(2)过点A作AC⊥x轴于点C,
由(1)可知,直线AB:y=x-2
∴B(2,0),即OB=2,
,OC=3,
∴BC=OC-OB=1,
∴AB==2=OB,
∴∠1=∠2,

∴∠2=30°,
∴∠BAO=∠2=30°.
分析:(1)把点A的横坐标代入反比例函数解析式可得n的值,进而把点A的坐标代入一次函数解析式可得m的值;
(2)过点A作AC⊥x轴于点C,根据点A的坐标可得∠AOC的度数及AB的长度,根据等边对等角可得所求角的度数.
点评:考查反比例函数与一次函数交点问题的有关运算;利用点A的坐标得到∠AOC的度数是解决本题的突破点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,过A作AC⊥x轴于点C.已精英家教网OA=
5
,OC=2AC
,且点B的纵坐标为-3.
(1)求点A的坐标及该反比例函数的解析式;
(2)求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•白云区一模)已知,如图,一次函数y=kx+b的图象与反比例函数y=
mx
的图象都经过点A(3,-2)和点B(n,6).
(1)n=
-1
-1

(2)求这两个函数的解析式;
(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于A、B两点,与x轴交于点C,OB=
10
tan∠BOC=
1
3

(1)求反比例函数的解析式;
(2)若BC=OC,求一次函数的解析式.
(3)直接写出当x<0时,kx+b-
m
x
>0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,过A作AC⊥x,轴于点C,已知OA=
5
,OC=2AC,且点B的纵坐标为-3,
(1)求点A的坐标;
(2)求该反比例函数的解析式;
(3)点B的坐标为
2
3
,-3)
2
3
,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y=kx+b的图象与y轴交于点A,且与正比例函数y=-x的图象交于点B,则该一次函数的解析式为
y=x+2
y=x+2
;不等式kx+b>-x的解集为
x>-1
x>-1

查看答案和解析>>

同步练习册答案