精英家教网 > 初中数学 > 题目详情
已知:如图,在正方形ABCD中,AD=1,P、Q分别为AD、BC上两点,且AP=CQ,连接AQ、BP交于点E,精英家教网EF平行BC交PQ于F,AP、BQ分别为方程x2-mx+n=0的两根.
(1)求m的值;
(2)试用AP、BQ表示EF;
(3)若S△PQE=
18
,求n的值.
分析:(1)根据AP=QC,AP+BQ=QC+BQ=BC=1,AP、BQ分别为方程x2-mx+n=0的两根,可知AP+BQ=m,AP•BQ=n,所以AP+BQ=m=1;
(2)利用平行线等分线段定理,结合合比性质可求得
EQ
AE
=
BQ
AP
EQ
AE+EQ
=
BQ
AP+BQ
EQ
AQ
=
BQ
AP+BQ
,所以EF=
AP•BQ
AP+BQ

(3)连接QD,则EP∥QD,得:S△AQD=
1
2
,三角形的面积公式,可知S△AEP=AP2•S△AQD=
1
2
AP2,所以求得S△PQE:S△AEP=EQ:AE,则可求得AP•BQ=
1
4
即n=
1
4
解答:解:(1)∵AP=QC,AP+BQ=QC+BQ=BC=1,
又∵AP、BQ分别为方程x2-mx+n=0的两根,
所以有AP+BQ=m,AP•BQ=n,
∴AP+BQ=m=1.
即m=1.

(2)∵EF∥AP,
EF
AP
=
EQ
AQ

又∵AP∥BQ,精英家教网
EQ
AE
=
BQ
AP

EQ
AE+EQ
=
BQ
AP+BQ
EQ
AQ
=
BQ
AP+BQ

EF
AP
=
BQ
AP+BQ
,即:EF=
AP•BQ
AP+BQ

∵AP+BQ=1,
∴EF=AP•BQ.

(3)连接QD,则EP∥QD
得:S△AQD=
1
2

且S△AEP:S△AQD=AP2:AD2=AP2:1=AP2
∴S△AEP=AP2•S△AQD=
1
2
AP2
∴S△PQE:S△AEP=EQ:AE,
1
8
1
2
AP2=EQ:AE=BQ:AP,
∴AP•BQ=
1
4
,即:n=
1
4
点评:主要考查了正方形的性质和平行线等分线段定理和根与系数的关系.要会利用一元二次方程根与系数的关系得到对应的字母的值,灵活的运用正方形的性质和平行线等分线段定理中的比例线段求对应线段的值或比例关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD中,E是CB延长线上一点,EB=
12
BC,如果F是AB的中点,请你在正方形ABCD上找一点,与F点连接成线段,并说明它和AE相等的理由.
解:连接
 
,则
 
=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为
2

③EB⊥ED;
④S△APD+S△APB=1+
6

⑤S正方形ABCD=4+
6
.其中正确结论的序号是(  )
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.△ADQ与△QCP是否相似?
为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在正方形ABCD中,AB=8,点E在边AB上点,CE的垂直平分线FP 分别交AD精英家教网、CE、CB于点F、H、G,交AB的延长线于点P.
(1)求证:△EBC∽△EHP;
(2)设BE=x,BP=y,求y与x之间的函数解析式,并写出定义域;
(3)当BG=
74
时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.
(1)线段AF与BE有何关系.说明理由;
(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.

查看答案和解析>>

同步练习册答案