如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=2︰5,直线CD垂直于直线AB于点P,交x轴于点D.
![]()
(1)求出点A、点B的坐标.
(2)请求出直线CD的解析式.
(3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
(1)A(0,2),B(-4,0);(2)直线CD的解析式:yCD=-2x+7;(3)存在,P1(-5.5 , 3),P2(9.5 , 3),P3(-2.5 , -3).
【解析】
试题分析:(1)根据一元二次方程的解法得出OA=2,OB=4,即可得出的A,B的坐标;
(2)首先利用角之间的关系得出△BOA∽△COD,即可得出D点的坐标,再利用待定系数法求一次函数解析式;
(3)先求出P点坐标(2,3),再根据平行四边形的性质,当PM=BD,M可在第一象限或第二象限,以及BM=PD时M在第三象限分别分析直接得出答案.
试题解析:(1)∵
∴![]()
∵OA、OB为方程的两个根,且OA<OB
∴OA=2,OB=4,
∴ A(0,2),B(-4,0),
(2)∵OA:AC=2:5
∴ AC=5
∴OC=OA+AC=2+5=7
∴ C(0,7),
∵∠BAO=∠CAP,∠CPB=∠BOA=90O
∴∠PBD=∠OCD
∵∠ BOA=∠COD=90O
∴△BOA∽△COD
∴
=![]()
∴ OD=
=
=
,
∴D(
,0)
设直线CD的解析式为
把x=0,y=7;x=
,y=0分别代入得:
![]()
∴
,
∴yCD=-2x+7,
(3)存在,P1(-5.5,3),P2(9.5,3),P3(-2.5,-3).
考点:一次函数综合题.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| m |
| x |
| m |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2013-2014学年四川省内江市九年级第一学期期末考试数学试卷(解析版) 题型:解答题
如图,直线AB分别与两坐标轴交于点A(4,0).B(0,8),点C的坐标为(2,0).
![]()
(1)求直线AB的解析式;
(2)在线段AB上有一动点P.
①过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.
②连结CP,是否存在点P,使
与
相似,若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com