精英家教网 > 初中数学 > 题目详情
(2010•沈阳)若等腰梯形ABCD的上,下底之和为2,并且两条对角线所交的锐角为60°,则等腰梯形ABCD的面积为   
【答案】分析:两条对角线所交的角有两组,一组是上下的,一组是左右的,题中没有明确指出哪组角,所以应该分两种情况进行分析.
解答:解:分两种情况考虑:过O作OE⊥AB,反向延长交CD于F.
(i)当∠AOB=∠COD=60°
∵四边形ABCD是等腰梯形
∴OA=OB,OC=OD
∵∠AOB=∠COD=60°
∴△OAB,△OCD均是等边三角形
设AB=x,则CD=2-x
∴OE=x,OF=(2-x)
∴EF=
∴S梯形ABCD=(AB+CD)•EF=×2×=

(ii)当∠AOD=∠BOC=60°
∴∠AOB=∠COD=120°
∴∠OAB=∠OBA=∠ODC=∠OCD=30°
设AB=x,则CD=2-x
∴OE=x,OF=(2-x)
∴EF=OE+OF=
∴S梯形ABCD=(AB+CD)•EF=×2×=
综上,等腰梯形ABCD的面积为
点评:此题主要考查学生对等腰梯形的性质及等腰三角形的性质等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(32)(解析版) 题型:解答题

(2010•沈阳)如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2010•沈阳)如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年辽宁省沈阳市中考数学试卷(解析版) 题型:解答题

(2010•沈阳)如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年辽宁省沈阳市中考数学试卷(解析版) 题型:填空题

(2010•沈阳)若等腰梯形ABCD的上,下底之和为2,并且两条对角线所交的锐角为60°,则等腰梯形ABCD的面积为   

查看答案和解析>>

同步练习册答案