精英家教网 > 初中数学 > 题目详情
已知A(2
3
,0),直线y=(2-
3
)x-2交x轴于点F,y轴于点B,直线l∥AB且交 y轴于点C,交x轴于点D,点A关于直线l的对称点为A',连接AA',A'D.直线l从AB开始,以1个单位每秒的速度沿y轴正方向向上平移,设移动时间为t.
(1)求A'点的坐标(用t的代数式表示);
(2)请猜想AB与AF长度的数量关系,并说明理由;
(3)过点C作直线AB的垂线交直线y=(2-
3
)x-2于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?
精英家教网
分析:(1)由l∥AB得出∠ODC=∠OAB,再由点A(2
3
,0),求出∴∠ODC=∠OAB=30°由点A关于直线l的对称点为A',求出A'点的坐标(用t的代数式表示);
(2)通过点F的坐标,得出AF,在Rt△OAB中,OA=2
3
,OB=2,求出AB,得AB=AF;
(3)先由直线l是点A和A'的对称轴得直线l是∠A'DA的平分线,即得点C到直线AD和A'D的距离相等,当⊙C与AD相切时,也一定与A'D相切,通过直角三角形求解.
解答:精英家教网解:(1)∵l∥AB.
∴∠ODC=∠OAB,
∵A(2
3
,0)B(0,-2),
∴tan∠OAB=
3
3

∴∠ODC=∠OAB=30°.
∵BC=t,∴OC=2-t,
∴OD=
3
(2-t),
∴AD=
3
t.
∵点A关于直线l的对称点为A',
∴A'D=AD=
3
t∠A'DA=60°,
∴△A'DA是正三角形.
过点A'作A'H⊥AD于H,
∴AH=
3
2
tA'H=
3
2
t,
∴A'点的坐标为(2
3
-
3
2
t,
3
2
t).精英家教网

(2)AB=AF.
说明:∵F(4+2
3
,0),
∴AF=4,
在Rt△OAB中,OA=2
3
,OB=2,
∴AB=4,
∴AB=AF.

(3)∵直线l是点A和A'的对称轴,
∴直线l是∠A'DA的平分线,
∴点C到直线AD和A'D的距离相等,
∴当⊙C与AD相切时,也一定与A'D相切.
∵∠OAB=30°且AB=AF,
∴∠ABF=15°,
∴∠CBF=75°.
∵CE⊥AB∠OBA=60°,
∴∠BCE=30°,
∴∠CEB=75°,
∴CB=CE.
∵⊙C与AD相切,
∴OC=CE=CB,
∴t=1.
当⊙C与AA'相切于点M时,CE=CB=CM,
∴CM=t,
∵CM=DM-CD,
在Rt△OCD中,∠ODC=30°,OC=t-2,
∴CD=2t-4,
∴2t-4+t=
3
2
t,
∴t=
8
3
点评:此题考查的知识点是一次函数的综合应用,较难,解题的关键是运用几何知识通过直角三角形、三角函数等知识求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知m-n=-
23
,则2+m-n=
 
,7-3m+3n=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x=
3
+
2
3
-
2
,y=
3
-
2
3
+
2
,求
x3-xy2
x4y+2x3y2+x2y3
(x+y)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x-y=
23
,则代数式4x-5y+2-x+2y=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠a=39°23′,则∠a的补角的度数是
140°37′
140°37′

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:2+
2
3
=22×
2
3
,3+
3
8
=32×
3
8
,4+
4
15
=42×
4
15
…,若10+
a
b
=102×
a
b
(a、b为正整数),则a+b的值为(  )

查看答案和解析>>

同步练习册答案